Зубчатые передачи: виды и типы, достоинства и недостатки, область применения, назначение, общие сведения, из чего состоят, где применяются, характеристики, определение, принцип действия
Черчение
Зубчатые передачи
Зубчатой передачей называется механизм, служащий для передачи вращательного движения с одного вала на другой и изменения частоты вращения посредством зубчатых колес и реек.
Зубчатое колесо, сидящее на передающем вращение валу, называется ведущим, а на получающем вращение — ведомым. Меньшее из двух колес сопряженной пары называют шестерней; большее — колесом; термин «зубчатое колесо» относится к обеим деталям передачи.
Зубчатые передачи представляют собой наиболее распространенный вид передач в современном машиностроении. Они очень надежны в работе, обеспечивают постоянство передаточного числа, компактны, имеют высокий КПД, просты в эксплуатации, долговечны и могут передавать любую мощность (до 36 тыс. кВт).
К недостаткам зубчатых передач следует отнести: необходимость высокой точности изготовления и монтажа, шум при работе со значительными скоростями, невозможность бесступенчатого изменения передаточного числа.
В связи с разнообразием условий эксплуатации формы элементов зубчатых зацеплений и конструкции передач весьма разнообразны.
Зубчатые передачи классифицируются по признакам, приведенным ниже.
- По взаимному расположению осей колес: с параллельными осями (цилиндрическая передача — рис. 172, I—IV); с пересекающимися осями (коническая передача — рис. 172, V, VI); со скрещивающимися осями (винтовая передача — рис. 172, VII; червячная передача — рис. 172, VIII).
- В зависимости от относительного вращения колес и расположения зубьев различают передачи с внешним и внутренним зацеплением. В первом случае (рис. 172, I—III) вращение колес происходит в противоположных направлениях, во втором (рис. 172, IV) — в одном направлении. Реечная передача (рис. 172, IX) служит для преобразования вращательного движения в поступательное.
- По форме профиля различают зубья эвольвентные (рис. 172, I, II) и неэвольвентные, например цилиндрическая передача Новикова, зубья колес которой очерчены дугами окружности.
- В зависимости от расположения теоретической линии зуба различают колеса с прямыми зубьями (рис. 173, I), косыми (рис. 173, II), шевронными (рис. 173, III) и винтовыми (рис. 173, IV). В непрямозубых передачах возрастает плавность работы, уменьшается износ и шум. Благодаря этому непрямозубые передачи большей частью применяют в установках, требующих высоких окружных скоростей и передачи больших мощностей.
- По конструктивному оформлению различают закрытые передачи, размещенные в специальном непроницаемом корпусе и обеспеченные постоянной смазкой из масляной ванны, и открытые, работающие без смазки или периодически смазываемые консистентными смазками (рис. 174).
- По величине окружной скорости различают: тихоходные передачи (v равной до 3 м/с), среднескоростные (v равной от 3. 15 м/с) и быстроходные (v более 15 м/с).
Основы теории зацепления
Боковые грани зубьев, соприкасающиеся друг с другом во время вращения колес, имеют специальную криволинейную форму, называемую профилем зуба. Наиболее распространенным в машиностроении является эвольвентный профиль (рис. 175).
Придание профилям зубьев зубчатых зацеплений таких очертаний не является случайностью. Чтобы зубья двух колес, находящихся в зацеплении, могли плавно перекатываться один по другому, необходимо было выбрать такой профиль для зубьев, при котором не происходило бы перекосов и защемления головки одного зуба во впадине другого.
На рис. 176 изображена пара зубчатых колес, находящихся в зацеплении. Линия, соединяющая центры колес О1 и О2 называется линией центров или межосевым расстоянием — aw.
Точка Р касания начальных окружностей dW1 и dW2 — полюс — всегда лежит на линии центров. Начальными называются окружности, касающиеся друг друга в полюсе зацепления, имеющие общие с зубчатыми колесами центры и перекатывающиеся одна по другой без скольжения.
Если проследить за движением пары зубьев двух колес с момента, когда они впервые коснутся друг друга до момента, когда они выйдут из зацепления, то окажется, что все точки касания их в процессе движения будут лежать на одной прямой NN. Прямая NN, проходящая через полюс зацепление Р и касательная к основным* окружностям db1, db2, двух сопряженных колес, называется линией зацепления. Отрезок ga линии зацепления, отсекаемый окружностями выступов сопряженных колес, — активная часть линии зацепления, определяющая начало и конец зацепления пары сопряженных зубьев.
Линия зацепления представляет собой линию давления сопряженных профилей зубьев в процессе эксплуатации зубчатой передачи.
Угол ?w между линией зацепления и перпендикуляром к линии центров O1О2 называется углом зацепления. В основу профилирования эвольвентных зубьев и инструмента для их нарезания положен стандартный по ГОСТ 13755-81 исходный контур так называемой рейки, равный 20°.
Во время работы цилиндрической прямозубой передачи сила давления Рn ведущей шестерни O1 в начале зацепления передается ножкой зуба на сопряженную боковую поверхность (контактную линию) головки ведомого колеса О2. Чем больше пара зубьев одновременно находится в зацеплении, тем более плавно работает передача, тем меньшую нагрузку воспринимает на себя каждый зуб.
Стремление сделать зубчатую передачу более компактной вызывает необходимость применять зубчатые колеса с возможно меньшим числом зубьев. Изменение количества зубьев зубчатого колеса влияет на их форму (рис. 177). При увеличении числа зубьев до бесконечности колесо превращается в рейку и зуб приобретает прямолинейное очертание. С уменьшением числа зубьев одновременно уменьшается толщина зуба у основания и вершины, а также увеличивается кривизна эвольвентного профиля, что приводит к уменьшению прочности зуба на изгиб. При уменьшении числа зубьев, когда z
На практике подрезку зубьев предотвращают прежде всего выбором соответствующего числа зубьев. Наименьшее число зубьев (zmin), при котором еще не происходит подрезание, рекомендуется выбирать от 35 до 40 при равном 15° и от 18 до 25 при ?w равном 20°.
В отдельных случаях приходится выполнять передачу с числом зубьев меньшим, чем рекомендуется, при этом производят исправление, или, как говорят, корригирование формы зубьев. Один из таких способов заключается в изменении высоты головки и ножки зуба до ha = 0,8m; hf = m. Этот способ исключает подрезку, но увеличивает износ зубьев.
Теперь обратимся к изложению основной теоремы зацепления: общая нормаль (линия зацепления NN) к сопряженным профилям зубьев делит межосевое расстояние ( ?w= О1О2) на отрезки (О1Р и 02Р), обратно пропорциональные угловым скоростям (w1 и w2). Если положение точки Р (полюса зацепления) неизменно в любой момент зацепления, то передаточное отношение — отношение частоты вращения ведущего колеса к частоте вращения ведомого — будет постоянным.
4.3. Основные элементы зубчатых зацеплений. При изменении осевого расстояния ?w = О1О2 пары зубчатых колес будет меняться и положение полюса зацепления Р на линии центров, а следовательно, и величина диаметров начальных окружностей, то есть у пары сопряженных зубчатых колес может быть бесчисленное множество начальных окружностей. Следует отметить, что понятие начальные окружности относится лишь к паре сопряженных зубчатых колес. Для отдельно взятого зубчатого колеса нельзя говорить о начальной окружности.
Если заменить одно из колес зубчатой рейкой, то для каждого зубчатого колеса найдется только одна окружность, катящаяся по начальной прямой рейке без скольжения, — эта окружность называется делительной.
Примечание. В настоящей книге рассматриваются зубчатые передачи, у которых начальные и делительные окружности совпадают.
Так как у каждого зубчатого колеса имеется только одна делительная окружность, то она и положена в основу определения основных параметров
зубчатой передачи по ГОСТ 16530- 83 и ГОСТ 16531-83 (рис. 178)
Основные параметры зубчатых колес:
1. Делительными окружностями пары зубчатых колес называются соприкасающиеся окружности, катящиеся одна по другой без скольжения. Эти окружности, находясь в зацеплении (в передаче), являются сопряженными. На чертежах диаметр делительной окружности обозначают буквой d.
2. Окружной шаг зубьев Рt — расстояние (мм) между одноименными профильными поверхностями соседних зубьев. Шаг зубьев, как нетрудно представить, равен делительной окружности, разделенной на число зубьев z.
3. Длина делительной окружности. Модуль. Длину делительной окружности можно выразить через диаметр и число зубьев: Пd = Pt • r. Отсюда диаметр делительной окружности d = (Рt • z)/П.
Отношение Pt/П называется модулем зубчатого зацепления и обозначается буквой т. Тогда диаметр делительной окружности можно выразить через модуль и число зубьев d = m • z. Отсюда m = d/z.
Значение модулей для всех передач — величина стандартизированная.
Для понимания зависимости между величинами Рt т и d приведена схема на рис. 178, II, где условно показано размещение всех зубьев 2 колеса по диаметру ее делительной окружности в виде зубчатой рейки.
4. Высота делительной головки зуба ha — расстояние между делительной окружностью колеса и окружностью вершин зубьев.
5. Высота делительной ножки зуба hf — расстояние между делительной окружностью колеса и окружностью впадин.
6. Высота зуба h — расстояние между окружностями вершин зубьев и впадин цилиндрического зубчатого колеса h = ha + hf..
7. Диаметр окружности вершин зубьев da — диаметр окружности, ограничивающей вершины головок зубьев.
8. Диаметр окружности впадин зубьев df — диаметр окружности, проходящей через основания впадин зубьев.
При конструировании механизма конструктор рассчитывает величину модуля т для зубчатой передачи и, округлив, подбирает модуль по таблице стандартизированных величин. Затем он определяет величины остальных геометрических элементов зубчатого колеса.
Зубчатые передачи с зацеплением M.Л. Новикова
В этом зацеплении профиль зубьев выполняется не по эвольвенте, а по дуге окружности или по кривой, близкой к ней (рис. 179).
При зацеплении выпуклые зубья одного из колес контактируют с вогнутыми зубьями другого. Поэтому площадь соприкосновения одного зуба с другим в передаче Новикова значительно больше, чем в эвольвентных передачах. Касание сопряженных профилей теоретически происходит в точке, поэтому данный вид зацепления называют точечным.
При одинаковых с эвольвентным зацеплением параметрах точечная система зацепления с круговым профилем зуба обеспечивает увеличение контактной прочности, что в свою очередь позволяет повысить нагрузочную способность передачи в 2. 3 раза по сравнению с эвольвентной. Взаимодействие зубьев в сравниваемых передачах также различно: в эвольвентном зацеплении преобладает скольжение, а в зацеплении Новикова — качение. Это создает благоприятные условия для увеличения масляного слоя между зубьями, уменьшения потерь на трение и увеличения сопротивления заеданию.
К достоинствам зацепления Новикова относятся возможность применения его во всех видах зубчатых передач: с параллельными, пересекающимися и скрещивающимися осями колес, с внешним и внутренним зацеплением, постоянным и переменным передаточным отношением. Потери на трение в этой системе зацепления примерно в 2 раза меньше потерь в эвольвентном зацеплении, что увеличивает КПД передачи.
К основным недостаткам передач с зацеплением Новикова относятся: технологическая трудоемкость изготовления колес, ширина колес должна быть не менее 6 модулей и др. В настоящее время передачи с зацеплением Новикова находят применение в редукторах больших размеров.
4.1. Зубчатые передачи. Назначение.Область применения. Классификация
— область применения зубчатых передач;
— классификацию зубчатых передач.
4.1.1 Роль и значение зубчатых передач в машиностроении
Зубчатые передачи являются наиболее распространёнными типами механических передач. Они находят широкое применение во всех отраслях машиностроения, в частности в металлорежущих станках, автомобилях, тракторах, сельхозмашинах и т.д., в приборостроении, часовой промышленности и др. Их применяют для передачи мощностей от долей до десятков тысяч киловатт при окружных скоростях до 150 м/с и передаточных числах до нескольких сотен и даже тысяч, с диаметром колёс от долей миллиметра до 6 м и более.
Зубчатая передача относиться к передачам зацеплением с непосредственным контактом пары зубчатых колёс. Меньшее из колёс передачи принято называть шестерней, а большее – колесом. Зубчатая передача предназначена в основном для передачи вращательного движения.
4.1.2 Достоинства зубчатых передач
1) высокая нагрузочная способность;
2) малые габариты;
3) большая надёжность и долговечность (40000 ч);
4) постоянство передаточного числа;
5) высокий КПД (до 0,97…0,98 в одной ступени);
6) простота в эксплуатации.
4.1.3 Недостатки зубчатых передач
1) повышенные требования к точности изготовления и монтажа;
2) шум при больших скоростях;
3) высокая жёсткость, не позволяющая компенсировать динамические нагрузки.
4.1.4. Классификация зубчатых передач
1. По взаимному расположению геометрических осей валов различают передачи:<>br — с параллельными осями – цилиндрические (рис.2.3.1.а-г);
— с пересекающимися осями – конические (рис.2.3.1.д; е);
— со скрещивающимися осями – цилиндрические винтовые (рис.2.3.1.ж);
— конические гипоидные и червячные (рис. 2.3.1.з);
— реечная передача (рис. 2.3.1.и).
Рисунок 2.3.1 Виды зубчатых передач
2. В зависимости от взаимного расположения зубчатых колёс:
— с внешним зацеплением (колёса передач вращаются в противоположных направлениях);
— с внутренним зацеплением (направление вращения колёс совпадают).
3. По расположению зубьев на поверхности колёс различают передачи:
— прямозубые; косозубые; шевронные; с круговым зубом.
4. По форме профиля зуба различают передачи:
— эвольвентные;
— с зацеплением М. Л. Новикова;
— циклоидальные.
5. По окружной скорости различают передачи:
— тихоходные ( );
— среднескоростные ;
— скоростные ;
— быстроходные .
6. По конструктивному исполнению передачи могут быть открытые (не защищены от влияния внешней среды) и закрытые (изолированные от внешней среды).
7. В зависимости от числа ступеней одно- и многоступенчатые.
8. В зависимости от относительного характера движения валов различают рядовые и планетарные.
Зубчатые передачи. Достоинства, недостатки. Материал. Краткие сведения об изготовлении зубчатых колес. Классификация зубчатых колес
Зубчатая передача — это механизм, который с помощью зубчатого зацепления передает или преобразует движение с изменением скоростей и моментов.
Достоинства зубчатых передач: Высокая надежность работы в широком диапазоне нагрузок и скоростей; Малые габариты; Большой ресурс; Высокий КПД; Сравнительно малые нагрузки на валы и подшипники; Постоянство передаточного числа; Простота обслуживания.
Недостатки зубчатых передач: Относительно высокие требования к точности изготовления и монтажа; Шум при больших скоростях, обусловленный неточностями изготовления профиля и шага зубьев; Высокая жесткость, не дающая возможность компенсировать динамические нагрузки, что часто приводит к разрушению передачи или элементов конструкции.
Виды зубчатых передач: 1 — цилиндрическая прямозубая передача; 2 — цилиндрическая косозубая передача; 3 — шевронная передача; 4 — реечная передача; 5 — цилиндрическая передача с внутренним зацеплением; 6 — винтовая передача; 7 — коническая прямозубая передача; 8 — коническая косозубая передача; 9 — коническая передача со спиралевидными зубьями; 10 — гипоидная передача.
Зубчатые передачи классифицируются:
В зависимости от взаимного расположения осей, на которых размещены зубчатые колеса, различают передачи цилиндрические (при параллельных осях), конические (при пересекающихся осях) и винтовые (при перекрещивающихся осях).
В зависимости от вида передаваемого движения различают зубчатые передачи, не преобразующие передаваемый вид движения и преобразующие передаваемый вид движения. К последним относятся реечные зубчатые передачи, в которых вращательное движение преобразуется в поступательное или наоборот.
В зависимости от расположения зубьев на ободе колес различают передачи прямозубые, косозубые, шевронные и с круговыми (спиральными) зубьями.
В зависимости от формы профиля зубьев различают эвольвентные зубчатые передачи, передачи с циклоидальным зацеплением, и передачи с зацеплением Новикова. Эвольвентное зацепление в зубчатых передачах, предложенное еще в 1760 году российским ученым Леонардом Эйлером, имеет наиболее широкое распространение. В 1954 году в России М. Л. Новиков предложил принципиально новый тип зацеплений в зубчатых колесах, при котором профиль зуба очерчен дугами окружностей. Такое зацепление возможно лишь для косых зубьев.
В зависимости от взаимного положения зубчатых колес передачи бывают с внешним и внутренним зацеплением.
В зависимости от конструктивного исполнения различают закрытые и открытые зубчатые передачи.
В зависимости от числа ступеней зубчатые передачи бывают одно- и многоступенчатые.
В зависимости от относительного характера движения осей зубчатых колес различают рядовые передачи, у которых оси неподвижны, и планетарные зубчатые передачи, у которых ось сателлита вращается относительно центральных осей.
Для изготовления зубчатых колес применяют следующие материалы:
— сталь углеродистую обыкновенного качества марок Ст5, Ст6; качественную сталь марок 35, 40, 45, 50, 55; легированную сталь марок 12ХНЗА, 30ХГС, 40Х, 35Х, 40ХН, 50Г; сталь 35Л, 45Л, 55Л;
— серый чугун марок СЧ10, СЧ15, СЧ20, СЧ25, СЧ30, СЧ40, высококачественный чугун марок ВЧ50-2, ВЧ45-5;
— неметаллические материалы (текстолит марок ПТК, ПТ, ПТ-1, лигнофоль, бакелит, капрон и др.).
Существуют следующие способы изготовления зубчатых колес:
— литье (без последующей механической обработки зубьев), для современных машин этот способ применяют редко;
— накатка зубьев на заготовке (также без последующей их обработки);
— нарезание зубьев (т. е. зубья получаются в процессе механической обработки заготовки).
Способ изготовления зубчатых колес выбирают в зависимости от их назначения и по технологическим соображениям.
Для отдельных конструкций машин в массовом производстве применяют способ накатки зубьев. Возможны также штамповка, протягивание и. т. д. В этом случае форма инструмента повторяет очертания впадины зубьев). В большинстве же случаев зубчатые колеса изготовляют нарезанием.
Зубья нарезают, как правило, методами копирования и обкатки. Копирование заключается в прорезании впадин между зубьями с помощью тисковой или пальцевой фрезы.
Обработка зубьев по методу обкатки производится инструментами очертаниями, отличными от очертаний нарезаемых зубьев, долбяком, червячной фрезой или инструментальной рейкой. Достоинством метода обкатки (огибания) является то, что он позволяет одним и тем же инструментом изготовлять колеса с зубьями различное формы. Обкатка по сравнению со способом копирования обеспечивает большую точность и производительность.
В зависимости от способа получения заготовки зубчатые колеса подразделяют на литые, кованые или штампованные, изготовленные механической обработкой, сварные.
Зубчатые передачи: разновидности и принцип работы
Зубчатые передачи получили широкое распространение как в промышленном оборудовании, так и в бытовых приборах. Они служат промежуточным элементом между источником вращательно-поступательного движения и агрегатом, который является потребителем получаемой энергии. При этом передаваемая мощность может варьироваться от незначительных величин (например, в часовых механизмах) до огромных значений (в турбинах электростанций).
Принцип работы
В большинстве случаев генератор энергии и конечный агрегат имеют разные характеристики. Они отличаются по скорости вращения, мощности, углу приложения усилия. Чтобы обеспечить доставку крутящего момента от двигателя до конечного агрегата, необходимо использовать промежуточные модули, способные передавать усилие с минимальными потерями.
Такими модулями служат зубчатые колеса (шестерни). Они представляют собой диск с зубьями, расположенный на цилиндрической или конической поверхности. Обычно они используются парами разного диаметра с одинаковым количеством зубьев.
Во время работы механизма зубья двух шестерен сцепляются. Головка зуба входит в зацепление с повторяющим ее форму углублением на соседней шестерне. При проворачивании ведущего вала ведомый начинает вращаться в противоположную сторону.
Таким образом, вращающий момент передается от одного элемента к другому. Если диаметр ведущего колеса больше, то вращающий момент ведомого колеса уменьшается, и наоборот.
Основные виды зубчатых передач
В различных областях промышленности и приборостроения активно применяются все разновидности зубчатых передач. Ежегодно подобные механизмы производятся миллионными партиями. Сфера их использования настолько обширна, что найти прибор, в работе которого применяется вращательное движение без помощи зубчатых соединений, достаточно проблематично.
По конструктивному исполнению зубчатые передачи подразделяются на следующие категории:
- Цилиндирическая. Используется наиболее часто, так как имеет более простую относительно других типов технологию производства шестерен. Цилиндрическая зубчатая передача применяется для передачи крутящего момента между валами, которые находятся в параллельных плоскостях. Может иметь несколько форм зубьев: прямые, косые и шевронные. Данный вид передач нашел свое применение в двигателях внутреннего сгорания, коробках передач подвижных составов, станков, буров. Он широко распространен в металлургии, машиностроении и других сферах промышленности.
- Коническая. Получила свое название за счет необычной конструкции колесных пар. Имеет форму срезанного конуса, на котором нарезаны зубья. Величина профиля зубьев уменьшается от основания к вершине. Коническая зубчатая передача используется в сложных и комбинированных механизмах, для которых характерны частые изменения нагрузок и углов вращения. Примерами могут служить ведущие мосты автотранспорта, сельскохозяйственной техники или железнодорожных составов, приводы различных промышленных станков.
- Реечная. Используется для преобразования вращательного движения в поступательное, и наоборот. При этом одна из шестерен заменяется плоскостью с нарезанными зубьями. Реечная передача проста в производстве и установке, способна выдерживать значительные нагрузки. В основном она применяется в механизме станков, основанных на поступательном движении: прессы, транспортеры с попеременной подачей, рулевые механизмы управления в переднеприводных автомобилях.
Любой вид зубчатых передач отличается продолжительным эксплуатационным периодом и надежностью работы (при соблюдении определенного уровня нагрузки и своевременном обслуживании). Сравнительно небольшой механизм способен обеспечить высокий КПД, благодаря чему и применяется для широкого круга задач.
Зубчатые передачи. Область их применения, достоинства и недостатки.
Зубчатые передачи, используемые в технике, служат для передачи вращательного движения между валами с параллельными, пересекающимися и скрещивающимися осями, а также для преобразования вращательного движения в поступательное.
достоинств:
1) малые габариты; 2) высокий КПД; 3) высокая надежность и долговечность; 4) постоянство передаточного отношения; 5) возможность изменения закона движения; 6) возможность использования в широком диапазоне скоростей и мощностей.
Недостатки:
1) производство зубчатых колес требует высокой культуры производства, а это дорого; 2) отсутствие функции самопредохранения от перегрузки; 3) повышенный шум в работе; 4) невозможность безступенчатого регулирования передаточного отношения.
Области применения:
З.П. имеют наиболее широкое распространение во всех отраслях машиностроения и приборостроения. Наибольшее распространение имеют передачи с цилиндрическими колесами, как наиболее простые в изготовлении и эксплуатации, надежные и малогабаритные. Конические, винтовые и червячные передачи применяются лишь в тех случаях, когда это необходимо по условиям компоновки машины.
Расчет зубьев прямозубых цилиндрических колес на контактную прочность. Вывод формулы для проектного расчета.
Допущения, мало влияющие на результаты расчетов практически для большинства используемых передач.
1. наименьшей контактной усталостью обладает околополюсная зона рабочей поверхности зубьев, где наблюдается однопарное зацепление. Поэтому расчет контактных напряжений принято выполнять для однопарного зацепления зубьев в полюсе.
2. Контакт зубьев можно рассматривать как контакт двух цилиндров с радиусами R1 и R2; здесь R1 и R2 радиусы кривизны эвольвентной поверхности зуба в полюсе зацепления.
Контактные напряжения определяют по формуле Г. Герца где Fn – нормальная сила в зацеплении
где Ft – окружная сила; aw – угол зацепления; KH – коэффициент расчетной нагрузки, учитывающий реальные условия работы зубчатой передачи
здесь соответственно KHb – коэффициент концентрации нагрузки по длине зуба, KHυ – коэффициент динамической нагрузки. Из кинематических характеристик известно, что
зубчатая передача, выполненной без смещения dw i = di.
где d1 и d2 – делительные диаметры зубчатых колес. Далее определим радиусы кривизны поверхности зубьев при зацеплении в полюсе в зависимости от параметров колеса и шестерни. Из треугольника ПА2О2 получим
а из треугольника ПА1О1
тогда
Выразим d1 через передаточное число u
тогда
получим
где
В результате математических преобразований окончательно получим
Дата добавления: 2018-05-13 ; просмотров: 996 ; Мы поможем в написании вашей работы!
Виды и принципы работы зубчатых передач: изучаем по порядку
Зубчатые передачи получили широкое распространение как в промышленном оборудовании, так и в бытовых приборах. Они служат промежуточным элементом между источником вращательно-поступательного движения и агрегатом, который является потребителем получаемой энергии. При этом передаваемая мощность может варьироваться от незначительных величин (например, в часовых механизмах) до огромных значений (в турбинах электростанций).
Что такое модуль зубчатого колеса
Современные шестерни далеко ушли от своих деревянных шестизубых предков, изготавливаемых механиками с помощью воображения и мерной веревочки. Конструкция передач намного усложнилась, тысячекратно возросли скорость вращения и усилия, передаваемые через такие передачи. В связи с этим усложнились и методы их конструирования. Каждую шестеренку характеризует несколько основных параметров
- диаметр;
- число зубьев;
- высота зубца;
- и некоторые другие.
Одним из самых универсальных характеристик является модуль зубчатого колеса. Существует для подвида — основной и торцевой.
В большинстве расчетов используется основной. Он рассчитывается применительно к делительной окружности и служит одним из важнейших параметров.
Для расчета этого параметра применяют следующие формулы:
где h — высота зубца.
где De — диаметр окружности выступов,а z — число зубьев.
Что же такое модуль шестерни?
это универсальная характеристика зубчатого колеса, связывающая воедино такие его важнейшие параметры, как шаг, высота зуба, число зубов и диаметр окружности выступов. Эта характеристика участвует во всех расчетах, связанных с конструированием систем передач.
Вопросы для контроля
- Что называют механической передачей, их основные разновидности?
- Что представляют собой зубчатые передачи: описание, назначение, классификация, достоинства и недостатки?
- Каков принцип работы червячных зубчатых передач, их основные достоинства и недостатки?
- Что представляют собой передачи с гибкими звеньями: описание, назначение, классификация?
- Какие основные достоинства и недостатки ременных передач в сравнении с цепными?
- Что представляют собой фрикционные передачи: описание, назначение, классификация?
Формула расчета параметров прямозубой передачи
Чтобы определить параметры прямозубой шестеренки, потребуется выполнить некоторые предварительные вычисления. Длина начальной окружности равна π×D, где D — ее диаметр.
Шаг зацепления t – это расстояние между смежными зубами, измеренное по начальной окружности. Если это расстояние умножить на число зубов z, то мы должны получить ее длину:
проведя преобразование, получим:
Если разделить шаг на число пи, мы получим коэффициент, постоянный для данной детали зубчатой передачи. Он и называется модулем зацепления m.
размерность модуля шестерни — миллиметры. Если подставить его в предыдущее выражение, то получится:
выполнив преобразование, находим:
Отсюда вытекает физический смысл модуля зацепления: он представляет собой длину дуги начальной окружности, соответствующей одному зубцу колеса. Диаметр окружности выступов D e получается равным
где h’- высота головки.
Высоту головки приравнивают к m:
Проведя математические преобразования с подстановкой, получим:
Диаметр окружности впадин D i соответствует D e за вычетом двух высот основания зубца:
где h“- высота ножки зубца.
Для колес цилиндрического типа h“ приравнивают к значению в 1,25m:
Выполнив подстановку в правой части равенства, имеем:
D i = m×z-2×1,25m = m×z-2,5m;
что соответствует формуле:
и если выполнить подстановку, то получим:
Иначе говоря, головка и ножка зубца относятся друг к другу по высоте как 1:1,25.
Следующий важный размер, толщину зубца s принимают приблизительно равной:
- для отлитых зубцов: 1,53m:
- для выполненных путем фрезерования-1,57m, или 0,5×t
Поскольку шаг t приравнивается к суммарной толщине зубца s и впадины s в, получаем формулы для ширины впадины
- для отлитых зубцов: s в =πm-1,53m=1,61m:
- для выполненных путем фрезерования- s в = πm-1,57m = 1,57m
Характеристики конструкции оставшейся части зубчатой детали определяются следующими факторами:
- усилия, прикладываемые к детали при эксплуатации;
- конфигурация деталей, взаимодействующих с ней.
Детальные методики исчисления этих параметров приводятся в таких ВУЗовских курсах, как «Детали машин» и других. Модуль шестерни широко используется и в них как один из основных параметров.
Для отображения шестеренок методами инженерной графики используются упрощенные формулы. В инженерных справочниках и государственных стандартов можно найти значения характеристик, рассчитанные для типовых размеров зубчатых колес.
Достоинства и недостатки зубчатых передач
Прежде всего, среди достоинств зубчатой передачи можно выделить:
- высокую надежность с учетом расширенного диапазона нагрузок и скоростей;
- компактность, большой ресурс и высокий КПД;
- относительно небольшие нагрузки на валы и подшипники;
- постоянное передаточное число (отношение);
- простота изготовления и обслуживания;
Также выделяют и недостатки зубчатой передачи:
- повышенные требования к качеству изготовления и точности установки;
- при высокой скорости вращения возникает шум по причине возможных неточностей при изготовлении шага и профиля зубьев;
- повышенная жесткость не позволяет эффективно компенсировать динамические нагрузки, в результате чего возникает разрушение и пробуксовки, появляются дефекты;
Напоследок отметим, что во время обслуживания механизм нужно осматривать, производя проверку состояния зубчатых колес, шестерен и зубьев на предмет повреждений, трещин, сколов и т.д.
Также проверяется само зацепление и его качество (часто используется краска, которая наносится на зубья). Нанесение краски позволяет изучить величину пятна контакта, а также расположение относительно высоты зуба. Для регулировки зацепления применяются прокладки, которые ставятся в подшипниковые узлы.
Исходные данные и замеры
На практике перед инженерами часто встает задача определения модуля реально существующей шестерни для ее ремонта или замены. При этом случается и так, что конструкторской документации на эту деталь, как и на весь механизм, в который она входит, обнаружить не удается.
Самый простой метод — метод обкатки. Берут шестерню, для которой характеристики известны. Вставляют ее в зубья тестируемой детали и пробуют обкатать вокруг. Если пара вошла в зацепление — значит их шаг совпадает. Если нет — продолжают подбор. Для косозубой выбирают подходящую по шагу фрезу.
Такой эмпирический метод неплохо срабатывает для зубчатых колес малых размеров.
Для крупных, весящих десятки, а то и сотни килограмм, такой способ физически нереализуем.
Результаты расчетов
Для более крупных потребуются измерения и вычисления.
Как известно, модуль равен диаметру окружности выступов, отнесенному к числу зубов плюс два:
Последовательность действий следующая:
- измерить диаметр штангенциркулем;
- сосчитать зубцы;
- разделить диаметр на z+2;
- округлить результат до ближайшего целого числа.
Данный метод подходит как для прямозубых колес, так и для косозубых.
Форма зуба
Зацепления различаются по профилю и типу зубьев . По форме зуба различают эвольвентные, круговые и циклоидальные зацепления. Наиболее часто используемыми являются эвольвентные зацепления. Они имеют технологическое превосходство. Нарезка зубьев может производиться простым реечным инструментом. Эти зацепления характеризуются постоянным передаточным отношением, не зависящим от смещения межцентрового расстояния. Но при больших мощностях проявляются недостатки, связанные с небольшим пятном контакта в двух выпуклых поверхностях зубьев. Это может приводить к поверхностным разрушениям и выкрашиванию материала поверхностей.
В круговых зацеплениях выпуклые зубья шестерни сцепляются с вогнутыми колесами и пятно контакта значительно увеличивается. Недостатком этих передач является то, что появляется трение в колёсных парах. Виды зубчатых колёс:
Прямозубые колёсные пары имеют наибольшее распространение. Их легко проектировать, изготавливать и эксплуатировать .
Поперечный профиль зуба
Боковая форма профиля зубьев колёс для обеспечения плавности качения может быть: , неэльвовентной передача Новикова (с одной и двумя линиями зацепления), . Кроме того, в применяются зубчатые колеса с несимметричным профилем зуба.
Двойные косозубые шестерни (шевроны)
Двойные косозубые шестерни решают проблему осевого момента. Зубья таких шестерён изготавливаются в виде буквы «V» (либо они получаются стыковкой двух косозубых шестерён со встречным расположением зубьев). Осевые моменты обеих половин такой шестерни взаимно компенсируются, поэтому отпадает необходимость в установке осей и валов в специальные подшипники. Передачи, основанные на таких зубчатых колёсах, обычно называют «шевронными».
Зубчатые конические колёса
Кроме наиболее распространёных циллиндрических З. к. применяются колёса конической формы. Конические шестерни применяются там, где необходимо передать крутящий момент под определённым углом. Такие конические шестерни с круговым зубом, например, применяются в автомобильных , используемых для передачи момента от двигателя к колёсам.
Секторные колёса
Секторная шестерня представляет собой часть обычной шестерни любого типа. Такие шестерни применяются в тех случаях, когда не требуется вращение механизма на 360°, и поэтому можно сэкономить на его габаритах.
Зубчатые колёса с внутренним зацеплением
При жестких ограничениях на габариты, в планетарных механизмах, в шестерённых насосах с внутренним зацеплением, в приводе башни , удобно применение колёс с зубчатым венцом, нарезанным с внутренней стороны. Также стоит заметить что вращение ведущего и ведомого колеса направленно в одну сторону.
Из чего изготавливаются зубчатые колеса и шестерни
Как правило, в основе зубчатого колеса лежит сталь. При этом шестерня должна иметь большую прочность, так как сами колеса могут иметь разные характеристики по прочности.
По этой причине шестерни изготавливаются из разных материалов, а также такие изделия проходят дополнительную термическую обработку и/или комплексную химическую и температурную обработку.
Например, шестерни, которые выполнены из легированной стали, также проходят процесс упрочнения поверхности, в рамках которого может быть использован метод, позволяющий добиться желаемых характеристик (азотирование, цементация или цианирование). Если для изготовления шестерни используется углеродистая сталь, такой материал проходит поверхностную закалку.
Что касается зубьев, для них предельно важна прочность поверхности, а также сердцевина должна быть мягкой и вязкой. Данные характеристики позволяют избежать излома и быстрого износа рабочей нагруженной поверхности. Еще добавим, что колесные пары механизмов, где нет больших нагрузок и высокой частоты вращения, изготавливают из чугуна. Также можно встретить в качестве материала для изготовления колесных пар бронзу, латунь и даже всевозможные виды пластика.
Сами зубчатые колеса выполняются из заготовки, полученной методом литья или штамповки. Затем применяется метод нарезки зубьев. Нарезка осуществляется путем использования методов копирования, обкатки. Метод обкатки дает возможность изготовить зубья разной конфигурации при помощи одного инструмента (долбяк, червячные фрезы, рейка).
Чтобы осуществить нарезку методом копирования, требуются пальцевые фрезы. После нарезки выполняется термическая обработка. Если же нужно зацепление высокой точности, после такой термообработки дополнительно выполняется шлифовка и обкатка.
Зубчатые передачи. Общие сведения и классификация зубчатых передач
Механизм, в котором два подвижных звена являются зубчатыми колесами, образующими с неподвижным звеном вращательную или поступательную пару, называют зубчатой передачей (рис. 1).
Рис. 1. Виды зубчатых передач: а, б, в — цилиндрические зубчатые передачи с внешним зацеплением; г — реечная передача; д — цилиндрическая передача с внутренним зацеплением; е — зубчатая винтовая передача; ж, з, и — конические зубчатые передачи; к — гипоидная передача
В большинстве случаев зубчатая передача служит для передачи вращательного движения. В некоторых механизмах эту передачу применяют для преобразования вращательного движения в поступательное (или наоборот, см. рис. 1, г).
Зубчатые передачи — наиболее распространенный тип передач в современном машиностроении и приборостроении; их применяют в широких диапазонах скоростей (до 275 м/с), мощностей (до десятков тысяч киловатт).
Основные достоинства зубчатых передач по сравнению с другими передачами:
— технологичность, постоянство передаточного числа;
— высокая нагрузочная способность;
— высокий КПД (до 0,97-0,99 для одной пары колес);
— малые габаритные размеры по сравнению с другими видами передач при равных условиях;
— большая надежность в работе, простота обслуживания;
— сравнительно малые нагрузки на валы и опоры.
К недостаткам зубчатых передач следует отнести:
— невозможность бесступенчатого изменения передаточного числа;
— высокие требования к точности изготовления и монтажа;
— шум при больших скоростях; плохие амортизирующие свойства;
— громоздкость при больших расстояниях между осями ведущего и ведомого валов;
— потребность в специальном оборудовании и инструменте для нарезания зубьев;
— зубчатая передача не предохраняет машину от возможных опасных перегрузок.
Зубчатые передачи и колеса классифицируют по следующим признакам (см. рис. 1):
— по взаимному расположению осей колес — с параллельными осями (цилиндрические, см. рис. 1, а—д), с пересекающимися осями (конические, см. рис. 1, ж—и), со скрещивающимися осями (винтовые, см. рис. 1, е, к);
— по расположению зубьев относительно образующих колес — прямозубые, косозубые, шевронные и с криволинейным зубом;
— по конструктивному оформлению — открытые и закрытые;
— по окружной скорости — тихоходные (до 3 м/с), для средних скоростей (3—15 м/с), быстроходные (св. 15 м/с);
— по числу ступеней — одно- и многоступенчатые;
— по расположению зубьев в передаче и колесах — внешнее, внутреннее (см. рис. 1, д) и реечное зацепление (см. рис. 1, г);
— по форме профиля зуба — с эвольвентными, круговыми;
— по точности зацепления. Стандартом предусмотрено 12 степеней точности. Практически передачи общего машиностроения изготовляют от шестой до десятой степени точности. Передачи, изготовленные по шестой степени точности, используют для наиболее ответственных случаев.
Из перечисленных выше зубчатых передач наибольшее распространение получили цилиндрические прямозубые и косозубые передачи, как наиболее простые в изготовлении и эксплуатации.
Преимущественное распространение получили передачи с зубьями эвольвентного профиля, которые изготавливаются массовым методом обкатки на зубофрезерных или зубодолбежных станках. Достоинство эвольвентного зацепления состоит в том, что оно мало чувствительно к колебанию межцентрового расстояния.
Другие виды зацепления применяются пока ограниченно. Так, циклоидальное зацепление, при котором возможна работа шестерен с очень малым числом зубьев (2-3), не может быть, к сожалению, изготовлено современным высокопроизводительным методом обкатки, поэтому шестерни этого зацепления трудоемки в изготовлении и дороги; новое пространственное зацепление Новикова пока еще не получило массового распространения, вследствие большой чувствительности к колебаниям межцентрового расстояния.
Прямозубые колёса (около 70%) применяют при невысоких и средних скоростях, когда динамические нагрузки от неточности изготовления невелики, в планетарных, открытых передачах, а также при необходимости осевого перемещения колёс.
Косозубые колёса (более 30%) имеют большую плавность хода и применяются для ответственных механизмов при средних и высоких скоростях.
Шевронные колёса имеют достоинства косозубых колёс плюс уравновешенные осевые силы и используются в высоконагруженных передачах.
Конические передачи применяют только в тех случаях, когда это необходимо по условиям компновки машины; винтовые — лишь в специальных случаях.
Колёса внутреннего зацепления вращаются в одинаковых направлениях и применяются обычно в планетарных передачах.
Передачи, их виды: фрикционные, ременные, цепные, зубчатые, червячные
материал предоставил СИДОРОВ Александр Владимирович
Механическая передача – механизм, превращающий кинематические и энергетические параметры двигателя в необходимые параметры движения рабочих органов машин и предназначенный для согласования режима работы двигателя с режимом работы исполнительных органов. [1]
Типы механических передач:
- зубчатые (цилиндрические, конические);
- винтовые (винтовые, червячные, гипоидные);
- с гибкими элементами (ременные, цепные);
- фрикционные (за счёт трения, применяются при плохих условиях работы).
В зависимости от соотношения параметров входного и выходного валов передачи разделяют на:
- редукторы (понижающие передачи) – от входного вала к выходному уменьшают частоту вращения и увеличивают крутящий момент;
- мультипликаторы (повышающие передачи) – от входного вала к выходному увеличивают частоту вращения и уменьшают крутящий момент.
Зубчатая передача – это механизм или часть механизма механической передачи, в состав которого входят зубчатые колёса. При этом усилие от одного элемента к другому передаётся с помощью зубьев. [2]
Зубчатые передачи предназначены для:
- передачи вращательного движения между валами, которые могут иметь параллельные, пересекающиеся или скрещивающиеся оси;
- преобразования вращательного движения в поступательное, и наоборот (передача “рейка-шестерня”).
Зубчатое колесо передачи с меньшим числом зубьев называется шестернёй, второе колесо с большим числом зубьев называется колесом.
Зубчатые передачи классифицируют по расположению валов:
- с параллельными осями (цилиндрические с внутренним и внешним зацеплениями);
- с пересекающимися осями (конические);
- с перекрестными осями (рейка-шестерня).
Цилиндрические зубчатые передачи (рисунок 1) бывают с внешним и внутренним зацеплением. В зависимости от угла наклона зубьев выполняют прямозубые и косозубые колёса. С увеличением угла повышается прочность косозубых передач (за счёт наклона увеличивается площадь контакта зубьев, уменьшаются габариты передачи). Однако в косозубых передачах появляется дополнительная осевая сила, направленная вдоль оси вала и создающая дополнительную нагрузку на опоры. Для уменьшения этой силы угол наклона ограничивают 8-20°. Этот недостаток исключён в шевронной передаче.
Рисунок 1 – Основные виды цилиндрических зубчатых передач
Конические зубчатые передачи (рисунок 2) применяют в тех случаях, когда оси валов пересекаются под некоторым углом, чаще всего 90°. Конические передачи более сложны в изготовлении и монтаже, чем цилиндрические. Нагрузочная способность конической прямозубой передачи составляет приблизительно 85% цилиндрической. Для повышения нагрузочной способности конических колёс применяют колёса с непрямыми (тангенциальными, круговыми) зубьями.
Рисунок 2 – Конические зубчатые передачи
Достоинства зубчатых передач:
- компактность;
- возможность передавать большие мощности;
- большие скорости вращения;
- постоянство передаточного отношения;
- высокий КПД.
Недостатки зубчатых передач:
- сложность передачи движения на значительные расстояния;
- жёсткость передачи;
- шум во время работы;
- необходимость в смазке.
Червячные передачи (рисунок 3) применяют для передачи движения между перекрещивающимися осями, угол между которыми, как правило, составляет 90°. Движение в червячных передачах передается по принципу винтовой пары.
Рисунок 3 – Червячная передача
В отличие от большинства разновидностей зубчатых в червячной передаче окружные скорости на червяке и на колесе не совпадают. Они направлены под углом и отличаются по значению. При относительном движении начальные цилиндры скользят. Большое скольжение является причиной низкого КПД, повышенного износа и заедания. Для снижения износа применяют специальные антифрикционные пары материалов: червяк – сталь, венец червячного колеса – бронза (реже – латунь, чугун).
Достоинства червячных передач:
- большие передаточные отношения;
- плавность и бесшумность работы;
- высокая кинематическая точность;
- самоторможение.
Недостатки червячных передач:
- низкий КПД;
- высокий износ, заедание;
- использование дорогих материалов;
- высокие требования к точности сборки.
Для передачи движения между сравнительно далеко расположенными друг от друга валами применяют механизмы, в которых усилие от ведущего звена к ведомому передаётся с помощью гибких звеньев. В качестве гибких звеньев применяются: ремни, шнуры, канаты разных профилей, провода, стальную ленту, цепи различных конструкций.
Передачи с гибкими звеньями могут обеспечивать постоянное и переменное передаточное отношения со ступенчатым или плавным изменением его величины.
Для сохранности постоянства натяжения гибких звеньев в механизмах применяются натяжные устройства: ролики, пружины, противовесы и т.п.
Различают следующие разновидности передач с гибкими звеньями:
- по способу соединения гибкого звена с остальными:
- фрикционные;
- с непосредственным соединением;
- с зацеплением;
- по взаимному расположению валов и направлению их вращения:
- открытые;
- перекрёстные;
- полуперекрёстные;
Ременная передача (рисунок 4) состоит из двух шкивов, закреплённых на валах, и ремня, охватывающего эти шкивы. Нагрузки передается за счёт сил трения, возникающих между шкивами и ремнём вследствие натяжения последнего.
В зависимости от формы поперечного перереза ремня различают передачи:
- плоскоременную;
- клиноременную (получили наиболее широкое применение);
- круглоременную.
Рисунок 4 – Ременная передача
Наибольшие преимущества наблюдаются в передачах с зубчатыми (поликлиновыми) ремнями.
Достоинства ременных передач:
- возможность передачи движения на значительные расстояния;
- плавность и бесшумность работы;
- защита механизмов от колебаний нагрузки вследствие упругости ремня;
- защита механизмов от перегрузки за счёт возможного проскальзывания ремня;
- простота конструкции и эксплуатации (не требует смазки).
Недостатки ременных передач:
- повышенные габариты (при равных условиях диаметры шкивов в 5 раз больше диаметров зубчатых колёс);
- непостоянство передаточного отношения вследствие проскальзывания ремня;
- повышенная нагрузка на валы и их опоры, связанная с большим предварительным натяжением ремня (в 2-3 раза больше, чем у зубчатых передач);
- низкая долговечность ремней (1000-5000 часов).
Цепная передача (рисунок 5) основана на принципе зацепления цепи и звёздочек. Цепная передача состоит из:
- ведущей звёздочки;
- ведомой звёздочки;
- цепи, которая охватывает звёздочки и зацепляется за них зубьями;
- натяжных устройств;
- смазывающих устройств;
- ограждения.
Рисунок 5 – Цепные передачи: а) с роликовой цепью; б) с зубчатой пластинчатой цепью
Область применения цепных передач:
- при значительных межосевых расстояниях;
- при передаче от одного ведущего вала нескольким ведомым;
- когда зубчатые передачи неприменимы, а ременные недостаточно надёжны.
По типу применяемых цепей бывают:
- роликовые;
- втулочные (лёгкие, но большой износ);
- роликовтулочные (тяжёлые, но низкий износ);
- зубчатые пластинчатые (обеспечивают плавность работы).
Достоинства цепных передач (по сравнению с ременной передачей):
- большая нагрузочная способность;
- отсутствие скольжения и буксования, что обеспечивает постоянство передаточного отношения и возможность работы при кратковременных перегрузках;
- принцип зацепления не требует предварительного натяжения цепи;
- могут работать при меньших межосевых расстояниях и при больших передаточных отношениях.
Недостатки цепных передач связаны с тем, что звенья располагаются на звёздочке не по окружности, а по многоугольнику, что влечёт:
- износ шарниров цепи;
- шум и дополнительные динамические нагрузки;
- необходимость обеспечения смазки.
Фрикционная передача – кинематическая пара, использующая силу трения для передачи механической энергии (рисунок 6). [3]
Рисунок 6 – Фрикционные передачи
Трение между элементами может быть сухое, граничное, жидкостное. Жидкостное трение наиболее предпочтительно, так как значительно увеличивает долговечность фрикционной передачи.
Фрикционные передачи делятся:
- по расположению валов:
- с параллельными валами;
- с пересекающимися валами;
- по характеру контакта:
- с внешним контактом;
- с внутренним контактом;
- по возможности варьирования передаточного отношения:
- нерегулируемые;
- регулируемые (фрикционный вариатор);
- при наличии промежуточных тел в передаче по форме контактирующих тел:
- цилиндрические;
- конические;
- сферические;
- плоские.
Виды и принципы работы зубчатых передач
Большинство механических передач включает в себя зубчатые зацепления. Зубчатые передачи используются для изменения скоростей вращательного движения, направлений вращения и моментов. Они служат для преобразования вращательного движения в поступательное и наоборот, для изменения пространственного расположения элементов трансмиссии и осуществления многих других функций, необходимых для работы машин и механизмов.
- Механизмы зубчатых передач
- Форма зуба
- Материалы для изготовления
- Способы обработки
- Обслуживание и расчёт
Механизмы зубчатых передач
Зубчатые зацепления применяются для передачи вращательного движения от двигателя к исполнительному органу.
При этом производятся необходимые преобразования движения, изменение частоты вращения, крутящего момента, направления осей вращения.
Для всего этого служат различные виды передач. Классификация видов зубчатых передач по расположению осей вращения:
Цилиндрическая передача состоит из колёсной пары обычно с разным числом зубьев. Оси зубчатых колёс в цилиндрической передаче параллельны. Отношение чисел зубьев называется передаточным отношением. Малое зубчатое колесо называется шестернёй, большое — колесом. Если шестерня ведущая, а передаточное число больше единицы, то говорят о понижающей передаче. Частота вращения колеса будет меньше частоты вращения шестерни. Одновременно при уменьшении угловой скорости увеличивается крутящий момент на валу. Если передаточное число меньше единицы, то это повышающая передача.
- Коническое зацепление. Характеризуется тем, что оси зубчатых колёс пересекаются и вращение передаётся между валами, которые расположены под определённым углом. В зависимости от того, какое колесо в передаче ведущее, они тоже могут быть повышающими и понижающими.
- Червячная передача имеет скрещивающиеся оси вращения. Большие передаточные числа получаются из-за соотношения числа зубьев колеса и числа заходов червяка. Червяки используются одно-, двух- или четырехзаходные. Особенностью червячной передачи является передача вращения только от червяка к червячному колесу. Обратный процесс невозможен из-за трения. Система самотормозящаяся. Этим обусловлено применением червячных редукторов в грузоподъёмных механизмах.
- Реечное зацепление. Образовано зубчатым колесом и рейкой. Преобразует вращательное движение в поступательное и наоборот.
- Винтовая передача. Применяется при перекрещивающихся валах. Из-за точечного контакта зубья зацепления подвержены повышенному износу под нагрузкой. Применяются винтовые передачи чаще всего в приборах.
- Планетарные передачи — это зацепления, в которых применяются зубчатые колёса с подвижными осями. Обычно имеется неподвижное наружное колесо с внутренней резьбой, центральное колесо и водило с сателлитами, которые перемещаются по окружности неподвижного колеса и вращают центральное. Вращение передаётся от водила к центральному колесу или наоборот.
Нужно различать наружное и внутреннее зацепление. При внутреннем зацеплении зубья большего колеса располагаются на внутренней поверхности окружности, и вращение происходит в одном направлении. Это основные виды зацеплений.
Существует огромное количество возможностей для их сочетания и использования в различных кинематических схемах.
Форма зуба
Зацепления различаются по профилю и типу зубьев. По форме зуба различают эвольвентные, круговые и циклоидальные зацепления. Наиболее часто используемыми являются эвольвентные зацепления. Они имеют технологическое превосходство. Нарезка зубьев может производиться простым реечным инструментом. Эти зацепления характеризуются постоянным передаточным отношением, не зависящим от смещения межцентрового расстояния. Но при больших мощностях проявляются недостатки, связанные с небольшим пятном контакта в двух выпуклых поверхностях зубьев. Это может приводить к поверхностным разрушениям и выкрашиванию материала поверхностей.
В круговых зацеплениях выпуклые зубья шестерни сцепляются с вогнутыми колесами и пятно контакта значительно увеличивается. Недостатком этих передач является то, что появляется трение в колёсных парах. Виды зубчатых колёс:
Прямозубые. Это наиболее часто используемый вид колёсных пар. Контактная линия у них параллельна оси вала. Прямозубые колёса сравнительно дешевы, но максимальный передаваемый момент у них меньше, чем у косозубых и шевронных колёс.
- Косозубые. Рекомендуется применять при больших частотах вращения, они обеспечивают более плавный ход и уменьшение шума. Недостатком является повышенная нагрузка на подшипники из-за возникновения осевых усилий.
- Шевронные. Обладают преимуществами косозубых колёсных пар и не нагружают подшипники осевыми силами, так как силы направлены в разные стороны.
- Криволинейные. Применяются при больших передаточных отношениях. Менее шумные и лучше работают на изгиб.
Прямозубые колёсные пары имеют наибольшее распространение. Их легко проектировать, изготавливать и эксплуатировать.
Материалы для изготовления
Основной материал для изготовления колёсных пар — это сталь. Шестерня должна иметь более высокие прочностные характеристики, поэтому колёса часто изготавливают из разных материалов и подвергают разной термической или химико-термической обработке. Шестерни, изготовленные из легированной стали, подвергают поверхностному упрочнению методом азотирования, цементации или цианирования. Для углеродистых сталей используется поверхностная закалка.
Зубья должны обладать высокой поверхностной прочностью, а также более мягкой и вязкой сердцевиной. Это предохранит их от излома и износа поверхности. Колёсные пары тихоходных машин могут быть изготовлены из чугуна. В различных производствах применяются также бронза, латунь и различные пластики.
Способы обработки
Зубчатые колёса изготавливаются из штампованных или литых заготовок методом нарезания зубьев. Нарезание производится методами копирования и обкатки. Обкатка позволяет одним инструментом вырезать зубья различной конфигурации. Инструментами для нарезания могут быть долбяки, червячные фрезы или рейки. Для нарезания методом копирования используются пальцевые фрезы. Термообработка производится после нарезки, но для высокоточных зацеплений после термообработки применяется ещё шлифовка или обкатка.
Обслуживание и расчёт
Техобслуживание заключается в осмотре механизма, проверке целостности зубьев и отсутствия сколов. Проверка правильности зацепления производится при помощи краски, наносимой на зубья. Изучается величина пятна контакта и его расположение по высоте зуба. Регулировка производится установкой прокладок в подшипниковых узлах.
Сначала надо определиться с кинематическими и силовыми характеристиками, необходимыми для работы механизма. Выбирается вид передачи, допустимые нагрузки и габариты, затем подбираются материалы и термообработка. Расчёт включает в себя выбор модуля зацепления, после этого подбираются величины смещений, число зубьев шестерни и колеса, межосевое расстояние, ширина венцов. Все значения можно выбирать по таблицам или использовать специальные компьютерные программы.
Главными условиями, необходимыми для длительной работы зубчатых передач, являются износостойкость контактных поверхностей зубьев и их прочность на изгиб.
Достижению хороших характеристик и уделяется основное внимание при проектировании и изготовлении зубчатых механизмов.
Зубчатые передачи
В настоящее время в агрегатах используются механические передачи нескольких различных видов. Самый распространенный вариант соединения движущихся деталей машин – зубчатые передачи, обеспечивающие повышенную надежность, стабильность передаточного числа и высокий КПД. При этом данный вид передач отличается компактностью, удобством, простотой эксплуатации и ремонтопригодностью.
Благодаря повсеместному применению, производство зубчатых передач различных типов не теряет своей значимости, продолжая сохранять актуальность из года в год.
Конструктивные особенности и принцип действия
Зубчатая передача представляет собой механизм, в котором двигательная энергия между валами передается посредством взаимодействия колес с зубьями и реек.
Колесо на передающем вращение валу называется ведущим, а на том, что получает энергию – ведомым. При этом более крупная деталь пары именуется собственно колесом, а меньшая – шестерней. Всю конструкцию нередко называют колесной парой.
Взаимодействие элементов тандема заключается в том, что головка зуба колеса входит во впадину шестерни, заставляя тем самым ее вращаться. Как правило, вращение последней происходит в направлении, противоположном движению колеса.
Между элементами предусмотрен минимальный зазор, что позволяет выполнять смазку, улучшая вращение и предотвращая заклинивание.
Практическое применение
С развитием промышленности, разнообразное применение зубчатая передача получила в самых разных отраслях: от крупногабаритных агрегатов (электротурбины) до небольших бытовых приборов (часы и различные средства измерений).
Среди крупнейших потребителей колесных пар:
- машиностроение (ДВС);
- добывающая отрасль (буровое оборудование);
- металлургия.
Не менее активно используют подобные элементы и при создании бытовых приборов различного назначения. Одним из простых и ярких примеров можно считать часовой механизм, приводящийся в действие именно колесными парами.
Классификация
Все многообразие колесных пар специалисты разделяют по различным признакам на несколько групп.
По взаиморасположению элементов
В данной категории выделяются такие виды зубчатых передач как:
- цилиндрическая (колеса в них находятся параллельно по отношению друг другу);
- коническая (с перекрещивающимися валами и, соответственно, деталями тандема);
- зубчато-винтовая (при скрещивающимся расположении элементов).
Первые используются наиболее широко, а их изготовление требует наименьших временных и финансовых затрат.
Детали конических передач по форме напоминают усеченный конус, и соприкасаются друг с другом боковыми сторонами. Это увеличивает площадь взаимодействующих поверхностей. Однако такая конструкция имеет большую чувствительность к погрешностям, и не способна выдерживать слишком большие нагрузки. Поэтому ее нередко используют в машинах и агрегатах, где есть другие типы зубчато-колесных механизмов.
Что касается зубчато-винтового типа, второе его название – червячный хорошо передает особенности соединения, которое состоит из червяка (винта) и колеса. К его достоинствам относят плавный ход, практическую бесшумность, большое передаточное отношение и способность к самоторможению.
По форме зуба
Зацепления в колесных связках отличаются по виду и профилю зубьев. На сегодняшний день известны:
- Зубчатые передачи эвольвентного зацепления. При таком варианте профили выступающих элементов колеса и шестерни очерчены по эвольвенте окружности. Это дает возможность сохранять стабильность передаваемой энергии при взаимодействии деталей.
- Циклоидальное. В нем профили зубьев очерчены по участкам циклоид. Достоинства этого вида – компактность в сочетании со способностью выдерживать усиленные нагрузки, плавность хода.
- Круговые (передача Новикова). Данный вид предполагает перемещение площадки контакта зубьев вдоль профиля зуба. Это обеспечивает более высокие значения передаточных чисел и возможность использовать даже при максимальных нагрузках.
Чаще всего, в механизмах применяются передачи с эвольвентным вариантом зацепления, что обусловлено достаточной простотой их изготовления, монтажа и эксплуатации. Циклоидальные и круговые передачи, в свою очередь, требуют больших затрат на производство, стоят дороже, но и позволяют обеспечить улучшенный функционал механизмов.
По расположению зубьев
По своему расположению зубья колеса и шестерни передачи бывают:
- Прямыми. Востребованы там, где необходимо передать крутящий момент с не очень большой и средней нагрузкой. Устанавливаются в механизмах с необходимостью смещения колес вдоль оси вала во время рабочего процесса.
- Косыми. Этот вариант позволяет повысить плавность вращения колес в тандеме.
- Шевронными – в виде «в елочку», сформированной из двух рядов косых зубьев.
Изготовление первого варианта деталей требует меньших финансовых и временных затрат, что снижает их стоимость и делает наиболее востребованными. Однако второй и третий вариант обладают рядом неоспоримых достоинств, которые позволяют комплектовать ими наиболее ответственные механизмы, работающие в условиях повышенных нагрузок.
Другие варианты классификации
Помимо особенностей взаиморасположения элементов в колесной паре, форм и расположения зубьев на них, передачи также классифицируются по:
- Конструкции (открытые и закрытые). Вторые могут работать только при постоянном наличии смазки, первые функционируют на сухом ходу.
- Окружной скорости (тихоходные – до 3 м/с; средние – от 3 до 15 м/с; быстроходные – свыше 15 м/с).
- Числу ступеней (одно- и многоступенчатые).
- Точности зацепления (существует 12 степеней, однако чаще всего используют с 6 по 10).
Кроме того, различают силовые зубчатые передачи и кинематические (не силовые). Первые передают вращающий момент и их размеры зависят от прочности зубьев. Вторые же практически не передают нагрузку, а их габариты определяются конструктивными особенностями.
Основные параметры
При изготовлении и применении колесных пар важное значение имеют параметры их составляющих. К основным параметрам относятся:
- Делительная окружность. Это те части элементов, которые соприкасаются между собой и катятся одна по другой без скольжения.
- Шаг – расстояние между профильными поверхностями соседних зубьев.
- Модуль (длина делительной окружности).
- Высота делительной головки.
- Диаметр окружности в районе вершин и на точках впадин зубьев.
Эти и другие параметры зубчатой передачи в обязательном порядке отображаются на чертежах. Их выбор зависит от назначения механизма, в котором будет использована зубчатая передача.
Большинство параметров инженеры рассчитывают во время проектирования, другие используют в готовом виде, выбирая их по специальным утвержденным таблицам.
Изготовление зубчатых передач
Среди основных требований к зубчатым передачам, независимо от их вида и предназначения – надежность при работе на любых скоростях и при различных нагрузках. Поэтому изготовление колесных пар является ответственным процессом. Состоит он из нескольких этапов, каждый из которых напрямую влияет на качество готовых изделий.
Материал изготовления
Сырьем, чаще всего используемым для создания элементов зубчатых передач, является сталь. При этом, для повышения прочности металл могут подвергать термической обработке, либо легировать, добавляя дополнительные элементы. Как правило, при изготовлении колесных пар используют:
- углеродистую сталь обыкновенного качества;
- высококачественные марки;
- легированные стали.
Наряду со стальными заготовками, в производстве зубчатых передач применяется и серый чугун. Этот сплав хорошо подходит для создания тихоходных крупногабаритных зубчатых передач с открытым типом конструкции. К плюсам чугуна относят нетребовательность к смазке, и способность деталей хорошо притираться друг к другу.
Также в производстве нередко используют бронзу, латунь, капролон, текстолит, различные пластики и формальдегиды.
Широко распространена практика, при которой для элементов используются разные по прочности металлы. Так, и колеса, и шестерни могут изготавливаться из стали. Но при этом металл для изготовления одной из составляющих пройдет более сильную термообработку и получит повышенную прочность.
Используемое оборудование
На всех предприятиях, которые изготавливают зубчатые передачи, цеха оснащаются современными устройствами, способствующими повышению эффективности процесса и точности нарезки колес. С их помощью можно быстро заготавливать не только цилиндрические колеса и шестерни, но и элементы червячного, шевронного, косозубого типа.
Большим плюсом высокотехнологичных станков последнего поколения является то, что заготовки на них можно располагать вертикально и максимально правильно нарезать зубья необходимой формы даже на колесах диаметром не превышающем 12 мм.
Максимальную точность изготовления колес до 75 модуля обеспечивают пальцевые фрезы, до 40 модуля – дисковые и до 30 модуля – червячные. Все эти варианты фрез также имеются на большей части оборудования.
Помимо станков с вертикальным расположением заготовок, на предприятиях используется оборудование и с горизонтальным вариантом установки элементов. На них обрабатываются колеса с косыми, прямыми и шевронными зубьями.
Также на предприятиях можно встретить станки, работающие долбяком-шестерней. Однако такое оборудование не позволяет добиться высокой точности, не отличается универсальностью и считается малопроизводительным.
Подготовка чертежей
Создание колесных пар начинается с подготовки чертежей. При проектировании учитываются виды зубчатых передач и их применение, условия планируемой эксплуатации механизма, расположение тандема в узле и возможные нагрузки на него.
От правильности составления чертежа во многом зависит конечный результат – качество изделия и длительность его эксплуатации. Поэтому в схемах в мельчайших подробностях инженеры отражают все особенности геометрии колес, их размеры и другие важные параметры.
При расчетах проектировщикам приходится учитывать не только условия заказчика, но и требования целого ряда стандартов. Для этого инженеры составляют таблицы и строят графики, рассчитывая значения по формулам с учетом всех коэффициентов. Алгоритм расчетов может состоять из нескольких десятков последовательных действий.
В настоящее время большинство чертежей выполняется при помощи компьютерных программ, что позволяет значительно снизить риск возникновения ошибок при расчетах.
Как правило, готовый чертеж отображает две проекции детали (фронтальный и боковой слева), но в некоторых случаях могут потребоваться и другие ракурсы изображений. Это особенно актуально для зубчатых передач, устройство которых имеет повышенную сложность и требует максимальной точности при нарезке зубьев и состыковке элементов пары.
Процесс производства
На основе схем и таблиц, подготовленных проектировщиками, в производственных цехах, для начала, создаются заготовки. Они представляют собой диски определенной толщины с прорезью для шпонки в середине. Для их изготовления могут использоваться два различных метода: литье или штамповка. В ряде случаев также может применяться технология нарезания.
В дальнейшем заготовки подвергаются дополнительной обработке, в ходе которой на них формируются зубья необходимых размеров и типа.
Нарезка также может осуществляться по различным технологиям:
- Копирование. Представляет собой процесс фрезерования. Впадины между зубьями детали в этом случае формируются при помощи дисковых, модульных или концевых фрез. После формирования очередной впадины, заготовка поворачивается на один шаг и процесс повторяется. Расстояние каждого шага равно зубу колеса. Главная особенность технологии заключается в том, что форма режущего инструмента повторяет контур впадины.
- Обкатка заготовок зубчатых передач – этап изготовления, предусматривающий имитацию зацепления зубчатой пары, одним из элементов которой является червячная фреза. Вместо нее также могут быть использованы долбяки и гребенки.
С помощью червячной фрезы изготавливают колеса с внешним расположением зубьев, с помощью долбяков – с внутренним. А гребенки позволяют нарезать прямые и косые зубья с большим модулем зацепления.
Обкатка считается самым часто используемым методом изготовления зубчатых колес на сегодняшний день.
Помимо нарезки, в массовом производстве зубчатых передач активно используется такой метод обработки заготовок, как горячее накатывание зубьев. Заключается он в том, что венец заготовки нагревается при помощи высокочастотного тока, а затем обкатывается между колесами-накатниками. В процессе такой накатки на колесе выдавливаются выемки, и формируются зубья.
После накатки детали проходят дополнительную механическую обработку, либо подвергаются процессу холодного накатывания – калибровке.
Стандарты изготовления зубчатых передач
И классификация зубчатых передач, и их параметры регулируются рядом различных ГОСТов. При этом точность заготовок может устанавливаться для различных отраслей и даже разных предприятий индивидуально, в зависимости от технологических особенностей колесных пар.
Все современные нормативы разделяются на те, что устанавливают стандарты на:
- используемое сырье;
- геометрию и пропорции отдельных элементов;
- готовые узлы и агрегаты, в конструкции которых присутствуют зубчатые передачи.
Согласно стандартам, качественные системы должны соответствовать следующим требованиям:
- сохранять неизменность передаточного отношения;
- обеспечивать стабильную передачу нагрузки от одного элемента к другому;
- иметь зазоры, предупреждающие заклинивание зубьев.
Дополнительно, с учетом назначения механизмов могут быть регламентированы и другие параметры кинематики зубчатых передач и их отдельных элементов. По каждому пункту есть максимально допустимые погрешности, превышение которых может привести к быстрому износу системы и остановке всего механизма.
Более 8 лет на рынке инжиниринговых услуг во всех сферах машиностроения.
Зубчатые передачи: виды, достоинства и недостатки зубчатых передач
Подавляющее большинство механических передач имеет в своей основе зубчатые зацепления. Другими словами, в зубчатой передаче усилие передается благодаря зацеплению пары зубчатых колес (зубчатой пары). Зубчатые передачи активно используются, позволяя изменять скорость вращения, направление, моменты.
Основной задачей является преобразования вращательного движения, а также изменение расположения элементов трансмиссии и ряд других функций, которые необходимы для работы узлов, агрегатов и механизмов. Далее мы рассмотрим типы зубчатых передач, их особенности, а также достоинства зубчатых передач и их недостатки.
Виды зубчатых передач
Как уже было сказано, зубчатые зацепления (передачи зацеплением) позволяют эффективно реализовать передачу вращательного движения, которое поступает от двигателя.
Параллельно осуществляется преобразование движения, изменяется частота вращения, величина крутящего момента, направление осей вращения и т.д. Чтобы выполнять такие задачи, существуют разные виды передач. Прежде всего, их принято классифицировать согласно особенностям расположения осей вращения.
- Цилиндрическая передача. Такая передача состоит из пары, которая обычно имеет разное количество зубьев, а оси зубчатых колес цилиндрической передачи являются параллельными. Также отношение чисел зубьев принято называть передаточным отношением. Меньшее по размеру зубчатое колесо называется шестерней, тогда как большое называют зубчатым колесом. В том случае, когда шестерня ведущая, при этом передаточное число оказывается больше единицы, такая передача является понижающей, так как зубчатое колесо будет вращаться с меньшей частотой, чем шестерня. Также одновременно при условии уменьшения угловой скорости происходит увеличение крутящего момента на валу. В случае, когда передаточное число оказывается меньше единицы, такая передача буде повышающей.
- Коническое зацепление. Особенностью является то, что оси зубчатых колес будут пересекаться, вращение передается между валами, расположенными под тем или иным углом. Передача будет понижающей или повышающей с учетом того, какое из колес оказывается ведущим в передаче данного типа.
- Червячная передача. Такая передача отличается тем, что имеет оси вращения, которые скрещиваются. Большое передаточное число получается в результате соотношения числа зубьев колеса, а также числа заходов червяка. Сами червяки бывают однозаходными, двухзаходными или четырехзаходными. Также важной особенностью червячной передачи считается то, что в этом случае вращение передается исключительно от червяка на червячное колесо. При этом обратный процесс является нереализуемым по причине ильного трения. Данная система имеет способность самостоятельно затормаживаться благодаря применению червячных редукторов (например, в механизмах для подъема грузов).
- Реечное зацепление, которое удается реализовать при помощи зубчатого колеса и рейки. Такое решение позволяет эффективно преобразовать вращательное движение в поступательное и обратно. Например, в автомобиле решение обычно используется в устройстве рулевого управления (рулевая рейка).
- Винтовые передачи. Такие передачи используются в том случае, если валы скрещиваются. При этом контакт зубьев зацепления точечный, сами зубья сильно изнашиваются под нагрузками. Передачи данного типа зачастую используются в разных приборах.
- Планетарная передача (планетарный механизм). Данный тип зацепления отличается от остальных тем, что в нем использованы зубчатые колеса, имеющие подвижные оси. Как правило, присутствует жестко закрепленное наружное колесо, которое имеет внутреннюю резьбу. Еще имеется центральное колесо, а также водило с сателлитами. Указанные элементы перемещаются по окружности неподвижного колеса, благодаря чему они вращают центральное колесо. В этом случае происходит передача вращения от водила на центральное колесо или же обратно.
Зубчатые передачи могут иметь наружное или внутреннее зацепление. Если с наружным все понятно (в данном случае схема зубчатой передачи предполагает, что зубья расположены сверху), то при внутреннем зацеплении зубья большего колеса располагаются на внутренней поверхности. Также вращение возможно только в одном направлении.
Рассмотрев выше основные виды зацеплений (зубчатых передач), следует добавить, что при этом указанные типы могут использоваться в разных сочетаниях с учетом особенностей тех или иных кинематических схем.
- Еще зубчатые передачи могут отличаться по форме зубьев, профилю и типу. С учетом отличий принято выделять следующие зацепления: эвольвентные, круговые и циклоидальные. При этом чаще всего используются именно эвольвентные зацепления, так как технологически данное решение превосходит другие аналоги.
Прежде всего, такие зубья нарезаются при помощи простого реечного инструмента. Указанное зацепление имеет постоянное передаточное отношение, которое никак не зависит от степени смещения межцентрового расстояния. Недостатком зацепления является только то, что во время передачи большой мощности сказывается небольшое пятно контакта в двух выпуклых поверхностях зубьев. Результат — разрушение поверхности и другие дефекты материала.
Еще добавим, что круговое зацепление отличается тем, что выпуклые зубья шестерни сцеплены с вогнутыми колесами. Это позволяет значительно увеличить пятно контакта, однако также сильно возрастает сила трения в указанных парах.
- Также можно отдельно выделить сами виды зубчатых колес: прямозубые, косозубые, шевронные и криволинейные. Прямозубые являются наиболее распространенными типами пар, они просты в разработке, дешевы в изготовлении и надежны в рамках эксплуатации. Линия контакта в данном случае параллельна оси вала. Такие колеса отличаются дешевизной производства, однако способны передать сравнительно небольшой максимальный крутящий момент по сравнению с косозубыми и шевронными зубчатыми колесами.
Косозубые колеса оптимально применять в том случае, если частота вращения очень высокая. Данное решение позволяет добиться плавности и снижения шума. Минусом принято считать большую нагрузку на подшипники, так как возникают осевые усилия.
Шевронные колеса имеют ряд преимуществ, свойственных косозубым парам. Прежде всего, они не создают дополнительной нагрузки на подшипники осевыми усилиями (силы разнонаправлены).
Криволинейные колеса обычно используют в том случае, когда необходимы максимальные передаточные отношения. Такие колеса создают меньше шума при работе, а также более эффективно работают на изгиб.
Из чего изготавливаются зубчатые колеса и шестерни
Как правило, в основе зубчатого колеса лежит сталь. При этом шестерня должна иметь большую прочность, так как сами колеса могут иметь разные характеристики по прочности.
По этой причине шестерни изготавливаются из разных материалов, а также такие изделия проходят дополнительную термическую обработку и/или комплексную химическую и температурную обработку.
Например, шестерни, которые выполнены из легированной стали, также проходят процесс упрочнения поверхности, в рамках которого может быть использован метод, позволяющий добиться желаемых характеристик (азотирование, цементация или цианирование). Если для изготовления шестерни используется углеродистая сталь, такой материал проходит поверхностную закалку.
Что касается зубьев, для них предельно важна прочность поверхности, а также сердцевина должна быть мягкой и вязкой. Данные характеристики позволяют избежать излома и быстрого износа рабочей нагруженной поверхности. Еще добавим, что колесные пары механизмов, где нет больших нагрузок и высокой частоты вращения, изготавливают из чугуна. Также можно встретить в качестве материала для изготовления колесных пар бронзу, латунь и даже всевозможные виды пластика.
Сами зубчатые колеса выполняются из заготовки, полученной методом литья или штамповки. Затем применяется метод нарезки зубьев. Нарезка осуществляется путем использования методов копирования, обкатки. Метод обкатки дает возможность изготовить зубья разной конфигурации при помощи одного инструмента (долбяк, червячные фрезы, рейка).
Чтобы осуществить нарезку методом копирования, требуются пальцевые фрезы. После нарезки выполняется термическая обработка. Если же нужно зацепление высокой точности, после такой термообработки дополнительно выполняется шлифовка и обкатка.
Достоинства и недостатки зубчатых передач
Прежде всего, среди достоинств зубчатой передачи можно выделить:
- высокую надежность с учетом расширенного диапазона нагрузок и скоростей;
- компактность, большой ресурс и высокий КПД;
- относительно небольшие нагрузки на валы и подшипники;
- постоянное передаточное число (отношение);
- простота изготовления и обслуживания;Рекомендуем также прочитать статью о том, что такое главная передача в автомобиле. Из этой статьи вы узнаете об устройстве, назначении и принципах работы главой передачи в конструкции авто.
Также выделяют и недостатки зубчатой передачи:
- повышенные требования к качеству изготовления и точности установки;
- при высокой скорости вращения возникает шум по причине возможных неточностей при изготовлении шага и профиля зубьев;
- повышенная жесткость не позволяет эффективно компенсировать динамические нагрузки, в результате чего возникает разрушение и пробуксовки, появляются дефекты;
Напоследок отметим, что во время обслуживания механизм нужно осматривать, производя проверку состояния зубчатых колес, шестерен и зубьев на предмет повреждений, трещин, сколов и т.д.
Также проверяется само зацепление и его качество (часто используется краска, которая наносится на зубья). Нанесение краски позволяет изучить величину пятна контакта, а также расположение относительно высоты зуба. Для регулировки зацепления применяются прокладки, которые ставятся в подшипниковые узлы.