Nd-avtodrom.ru

НД Автодром
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как работает турбина на авто? рассматриваем в подробностях

DenWRX › Блог › ЧТО ТАКОЕ ТУРБИНА И КАК РАБОТАЕТ ТУРБО МОТОР Часть 1.

Основы турбо-наддува. Часть 1.

Основные принципы работы турбо двигателя.

Как известно, мощность двигателя пропорциональна количеству топливо-воздушной смеси попадающей в цилиндры. При прочих равных, двигатель большего объема пропустит через себя больше воздуха и, соответственно, выдаст больше мощности, чем двигатель меньшего объема. Если нам требуется что бы маленький двигатель выдавал мощности как большой или мы просто хотим что бы большой выдавал еще больше мощности, нашей основной задачей станет поместить больше воздуха в цилиндры этого двигателя. Естественно, мы можем доработать головку блока и установить спортивные распредвалы, уеличив продувку и количество воздуха в цилиндрах на высоких оборотах. Мы даже можем оставить количество воздуха прежним, но поднять степень сжатия нашего мотора и перейти на более высокий октан топлива, тем самым подняв КПД системы. Все эти способы действенны и работают в случае когда требуемое увеличение мощности составляет 10-20%. Но когда нам нужно кардинально изменить мощность мотора — самым эффективным методом будет использование турбокомпрессора.

Каким же образом турбокомпрессор позволит нам получить больше воздуха в цилиндрах нашего мотора? Давайте взгянем на приведенную ниже диаграмму:

Рассмотрим основные этапы прохождения воздуха в двигателе с турбокомпрессором:

— воздух проходит через воздушный фильтр (не показан на схеме) и попадает на вход турбокомпрессора (1)
— внутри турбокомпрессора вошедший воздух сжимается и при этом увеличивается количество кислорода в единице объема воздуха. Побочным эффектом любого процесса сжатия воздуха является его нагрев, что несколько снижает его плотность.
— Из турбокомпрессора воздух поступает в интеркулер (3) где охлаждается и в основной мере восстанавливает свою температуру, что кроме увеличения плотности воздуха ведет еще и к меньшей склонности к детонации нашей будущей топливо-воздушной смеси.
— После прохождения интеркулера воздух проходит через дросеель, попадает во впускной коллектор (4) и дальше на такте впуска — в цилиндры нашего двигателя.
Объем цилиндра является фиксированной величиной, обусловленной его диаметром и ходом поршня, но так как теперь он заполняется сжатым турбокомпрессором воздухом, количество кислорода зашедшее в цилиндр становится значительно больше чем в случае с атмосферным мотором. Большее количество кислорода позволяет сжечь большее количество топлива за такт, а сгорание большего количества топлива ведет к увеличению мощности выдаваемой двигателем.
— После того как топливо-воздушная смесь сгорела в цилиндре, она на такте выпуска уходит в выпускной коллекторе (5) где этот поток горячего (500С-1100С) газа попадает в турбину (6)
— Проходя через турбину поток выхлопных газов вращает вал турбины на другой стороне которого находится компрессор и тем самым совершает работу по сжатию очередной порции воздуха. При этом происходит падение давления и температуры выхлопного газа, поскольку часть его энергии ушла на обеспечение работу компрессора через вал турбины.

Ниже приведена схема внутреннего устройства турбокомпрессора:

В зависимоти от конкретного мотора и его компоновки под капотом, турбокомпрессор может иметь дополнительные встроенные элементы, такие как Wastegate и Blow-Off. Рассмотрим их подробнее:

Blow-off
Блоуофф (перепускной клапан) это устройство установленное в воздушной системе между выходом из компрессора и дроссельной заслонкой с целью недопустить выход компрессора на режим surge. В моменты когда дроссель резко закрывается, скорость потока и расход воздуха в системе резко падает, при этом турбина еще некоторое время продолжает вращаться по инерции со скоростью не соответствующей новому упавшему расходу воздуха. Это вызывает циклические скачки давления за компрессором и слышимый характерный звук прорывающегося через компрессор воздуха. Surge со временем приводит к выходу из строя опорных подшипников турбины, в виду значительной наргрузки на них в этих переходных режимах. БлоуОфф использует комбинацию давлений в коллекторе и установленной в нем пружины что бы определить момент закрытия дросселя. В случае резкого закрытия дросселя блоуофф сбрасывает в атмосферу, возникающий в воздушном тракте избыток давления и тем самым спасает турбокомпрессор от повреждения.

Wastegate:
Представляет собой механический клапан устанавленный на турбинной части или на выпускном коллекторе и обеспечивающий контроль за создаваемым турбокомпрессором давлением. Некоторые дизельние моторы используют турбины без вейстгейтов. Тем не менее подавляющее большинство бензиновых моторов обязательно требуют его наличия. Основной задачей вейстгейта является обеспечивать выхлопным газам возможность выхода из системы в обход турбины. Пуская часть газов в обход турбины, мы контролируем количество энергии газов которое уходит через вал на компрессор и тем самым управляем давлением наддува, создаваемое компрессором. Как правило вейстгейт использует давление наддува и давление встроенной пружины что бы контролировать обходной поток выхлопных газов.
Встроенный вейстгейт состоит из заслонки встроенной в турбинный хаузинг (улитку), пневматического актуатора и тяги от актуатора к заслонке.
Внешний гейт представляет собой клапан устанавливаемый на выпускной коллектор до турбины. Преимуществом внешнего гейта является то, что сбрасываемый им обходной поток может быть возвращен в выхлопную систему далеко от выхода из турбины или вообще сброшен в атмосферу на спортивных автомобилях. Все это ведет к улучшению прохождения газов через турбину в виду отсутствия разнонаправленных потоков в компактном объеме турбинного хаузинга.

Водяное и маслянное обеспечение:
Шарикоподшипниковые турбины Garrett требуют значительно меньше масла чем втулочные аналоги. Поэтому установка маслянного рестриктора на входе в турбину крайне рекомендована если давление масла в вашей системе привышает 4 атм. Слив масла должен быть заведен в поддон выше уровня масла. Поскольку слив масла из турбины происходит естественным путем под действием гравитации, крайне важно что бы центральный картридж турбины был ориентирован сливом масла вниз.
Частой причиной выхода из строя турбин является закоксовка маслом в центральном картридже. Быстрая остановка мотора после больших продолжительных нагрузок ведет к теплообмену между турбиной и нагретым выпускным коллектором, что в отсутствии притока свежего масла и поступления холодного воздуха в компрессор ведет к общему перегреву картриджа и закоксовке имеющегося в нем масла.
Для минимизации этого эффекта турбины снабдили водяным охлаждением. Водные шланги обеспечивают эффект сифона снижая температуру в центральном картридже даже после остановки двигателя, когда нет принудительной циркуляции воды. Желательно так же обеспечить минимум неравномерности по вертикали линии подачи воды, а так же несколько развернуть центральный картридж вокруг оси турбины на угол до 25 градусов.

Правильный подбор турбины является ключевым моментом в постройке турбо-мотора и основан на многих вводных данных. Самым основным фактом выбора является требуемая от мотора мощность. Важно также выбирать эту цифру максимально реалистично для вашего мотора. Поскольку мощность мотора зависит от количества топливо-воздушной смеси которая через него проходит за единицу времени, опредлив целевую мощность мы приступим к выбору турбины способной обеспечить необходимый для этой мощности поток воздуха.

Другим крайне важным фактором выбора турбины является скорость ее выхода на наддув и минимальные обороты двигателя на которых это происходит. Меньшая турбина или меньший горячий хаузинг позволяют улучшить эти показатели, но максимальная мощность при этом будет снижена. Тем не менее за счет большего рабочего диапазона работы двигателя и быстрого выход турбины на наддув при открытии дросселя в целом результат может быть значительно лучше, чем при использовании большей турбины с большой пиковой мощностью, но в узком верхнем диапазоне работы мотора.

Втулочные и шарикоподшипниковые турбины.
Втулочные турбины были самыми распространенными в течении долгого времени, тем не менее новые и более эффективные шарикоподшипниковые турбины используются все чаще. Шарикоподшипниковые турбины появились как результат работы Garrett Motorsport во многих гоночных сериях.
Отзывчивость турбины на дроссель очень зависит от конструкции центрального картриджа. Шарикоподшипниковые турбины Garrett обеспечивают на 15% более быстрый выход на наддув относительно их втулочных аналогов, снижая эффект турбо-ямы и приближая ощущение от турбо-мотора к атмосферному большеобъемнику.
Шарикоподшипниковые турбины так же требуют значительно меньшего потока масла через картридж для смазки пошипников. Это снижает вероятность утечек масла через сальники. Так же такие турбины менее требовательны к качеству масла и менее склонны к закоксовке после глушения двигателя.

Как работает турбонаддув

Турбокомпрессор или попросту турбина – это дополнительное устройство двигателя, которое для своей работы использует энергию отработавших газов. Что позволяет увеличить мощность двигателя на величину от 25% до 100%. Прежде чем понять, как работает турбокомпрессор, стоит рассмотреть функционирование двигателя внутреннего сгорания.

Принцип работы ДВС

Любой двигатель внутреннего сгорания, дизельный или бензиновый, работает на принципе получения энергии, образующейся от воспламенения топливовоздушной смеси в камерах сгорания. Через впускные клапаны в цилиндр подается отфильтрованный внешний воздух и впрыскивается топливо, причем при пассивной подаче воздуха, в цилиндр подается дозированное количество топлива. Именно эта смесь сгорает в цилиндре и заставляет двигаться поршень, который передает свою кинетическую энергию на ходовую систему автомобиля. Чем больше такой смеси подается и сгорает в цилиндрах, тем больше выходной крутящий момент и соответственно выше общая мощность мотора.

Принцип работы турбины

Для увеличения подачи воздуха в цилиндр, без изменения объема самого цилиндра, используют турбокомпрессор. При работе турбины используются продукты сгорания топливной смеси, которые приводят в действие роторный механизм турбокомпрессора, с помощью которого атмосферный воздух принудительно нагнетается в цилиндры (турбонаддув). И, благодаря этому, в цилиндр подается и большая дозировка топлива. Во время нагнетания, воздух может нагреваться, из-за чего уменьшается его плотность и масса в цилиндрах. Для подачи большего количества воздуха, его необходимо охладить. Для лучшего охлаждения используется радиаторное устройство, называемое интеркулером, который устанавливается на выходе из холодной части турбокомпрессора и через который проходит воздух перед попаданием в цилиндры. На следующем этапе поршень всасывает этот охлажденный воздух через впускные клапаны и одновременно в камеру сгорания подается топливо, образуется топливовоздушная смесь. Возгорание топливной смеси происходит от искры (бензиновые двигатели), либо от сжатия (дизельные двигатели). После того, как произошло сгорание порции смеси, продукты горения выбрасываются через выпускной клапан и попадают снова в турбину, на ее ротор. Таким образом, она работает без участия движущих частей двигателя, используя энергию потока выхлопных газов.

Для каждого двигателя турбокомпрессор подбирается индивидуально, исходя из его собственной мощности и объема. Причем величина наддува зависит от геометрических параметров (размеров) улиток, компрессорного колеса, ротора турбины. Некоторые конструкции двигателей оборудуют не одной турбиной, а двумя: одинакового размера – би-турбо, разного размера – твин-турбо. В последнее время широкое распространение получили турбокомпрессоры с механизмом изменяемой геометрии. Стоит отметить, что сложность, а соответственно и стоимость ремонта турбины зависит от ее конструктивных особенностей и модификации.

Механизм изменяемой геометрии

Такой механизм позволяет дозировать подачу отработавших газов на колесо в турбине (ротор). Тем самым, позволяет оптимизировать работу турбокомпрессора на различных оборотах.

Это достигается за счет движения специальных лопаток, смонтированных на кольце геометрии. Они синхронно передвигаются, получая движение от вакуумного актуатора или электронного сервопривода в определенный момент, и контролируют наддув. Как правило, устанавливаются они на дизельных ДВС, потому как температура выхлопных газов у бензиновых моторов выше, чем у дизеля, соответственно лопатки геометрии могут деформироваться. Такие турбины позволяют оптимизировать процесс турбонаддува, что приводит к уменьшению расхода топлива и вредных выбросов при одновременном повышении мощности и крутящего момента.

Многие автомобилисты ошибочно полагают, что турбокомпрессор начинает включаться в работу с оборотов мотора от 1500-2000 об/мин. На самом деле, он запускается сразу после заводки автомобиля и работает на холостом ходу. А оптимальных оборотов достигает в диапазоне свыше 1500 об/мин.

Турбокомпрессор достаточно надежный агрегат, однако если Вы столкнулись с его поломкой, решить проблему Вам помогут специалисты ТурбоМикрон. Мы производим замену турбины на автомобиле, а также ремонт снятых с авто турбокомпрессоров.

Как работает турбина авто — ее устройство и эксплуатация

На сегодняшний день современный автопром активно внедрил технологию использования турбинных двигателей, и теперь без них представить современный автомобиль уже немыслимо.

Но не все имеют полное представление о том как работает турбина у авто, преимуществах турбины, рациональности установки и использования.

Итак, рассмотрим принцип действия турбины:

Двигатель состоит из цилиндров, в которых сгорает топливо того или иного вида. Мощность прямо пропорционально зависит от количества цилиндров.

Турбина предназначена для ускорения подачи топлива в камеру сгорания, чем больше будет его сгорать, тем больше потребуется воздуха. Этого можно достичь с помощью такой конструкции как у турбин – улиткооборазной.

Максимальные обороты агрегата составляют 240000 оборотов в минуту, а двигатель, к примеру, развивает только 10000. Чем больше нагнетается воздуха, тем больше сгорает горючей смеси и увеличивается мощность, что приводит к увеличению скорости.

Как правильно эксплуатировать изделие:

• Монтаж катализатора осуществляется очень тщательно, во избежание появления трещин от механического воздействия;

• Необходимо систематическая замена фильтрующих элементов, с целью недопущения прямого попадания пыли, песка, грязи;

• Не рекомендуется длительное время ездить на повышенных оборотах, с целью недопущения перегрева и выхода со строя;

• Не допускать агрессивное использование турбины на дорогах городского значения, уберегая себя и других участников от дорожно-транспортных происшествий.

Новинкой стало использование двух турбин на одном двигателе, а моторы стали битурбированными. Сила «железного коня» увеличится вдвое, но есть и неприятный исход, так как при остановке нагнетателя, коленвал до полной остановки вращается без смазочной жидкости, что может привести в ускоренному износу.

Катализаторы устанавливаются абсолютно на все транспортные средства, и без того достаточно мощны. Владелец машины может в любой момент демонтировать ускоритель на любом сервисном центре.

Положительная сторона турбин:

• Быстрота ускорения и набора скорости, приёмистость;

• Уникальность звучания катализатора;

• Возможность самовыражения в кругу знакомых.

Отрицательная сторона:

• Повышенное потребление топлива;

• При отсутствии опыта шансы совершить аварию увеличиваются в несколько раз;

• За лихачество на дорогах существенные штрафные санкции.

Турбинный механизм состоит из: крыльчатки-турбины, вала, непосредственно корпуса. Инженеры часто употребляют такое слово как турболаг – это период (яма) между моментом нажатия на акселератор и нагнетанием воздуха турбиной.

С данной проблемой на сегодняшний день успешно борются путём монтажа в ускоритель двух клапанов: для нагнетания воздуха и для выпуска отработанных газов.

Ограниченный ресурс службы был продлён с помощью замены материала для изготовления шариков подшипника на керамику, способную выдерживать перепады температурных режимов, огромную частоту вращения, общая масса изделия снижена на 20 %.

С целью достижения максимального использования нагнетающегося воздуха, специалистами разработано устройство под названием интеркулер, задача которого состоит в том, чтобы охлаждать нагнетаемый воздух, тем самым повышая эффективность работы компрессора.

Автопрому известны компрессоры трёх видов: центробежный, роторный, двухвинтовой, которые отличаются системой подачи воздуха в мотор. Кулачковый вал применяется роторным и двухвинтовым компрессоры, а центробежный – крыльчатку.

Роторный компрессор имеет огромные габариты, и как правило размещён над двигателем, выступая за капот. Фанаты дрэгстеров и роддеров приобретают такие установки.

Двухвинтовой нагнетатель более практичен и компактен, но ввиду своей конструкции цена выше, чем у «братьев».
Центробежный катализатор эффективен и востребован, по сравнению с родственниками. Лёгок, компактен, практичен в установке в передней части мотора, заставляющий прохожих оборачиваться слыша такой прекрасный свист.

Признаки поломки агрегата:

Наличие белого дыма в выхлопной трубе автомобиля, резкое падение мощности, существенное потребление моторного масла двигателем – это первые симптомы, свидетельствующие о необходимости поездки на сертифицированный сервис технического обслуживания для устранения поломки и предотвращения появления новых.

Могут подлежать замене или профилактике: подшипники и уплотнительные кольца, пропускающие потоки масла, преобразующиеся в белый дым. Осуществлять демонтаж следует очень аккуратно и только всю турбину в сборе.

Подводя итог, следует отметить, что устанавливать или нет турбину решать конечно только собственнику транспорта, но учитывать указанные в статье рекомендации необходимо каждому, с целью недопущения возникновения ошибок и аварийности на дорогах.

Принцип работы турбины на бензиновом двигателе

Количество выпускаемых автомобилей с турбированными двигателями постоянно растет, поскольку подобные авто пользуются спросом на рынке. Однако далеко не все автовладельцы знают, как работает турбина на бензиновом двигателе, хотя и проявляют интерес к этой тематике. Дело тут вовсе не в лени, а в чрезмерно сложной подаче материала, делающей его недоступным для понимания большинства автомобилистов.

Для начала необходимо понять, для чего нужна турбина: она позволяет увеличить мощность небольшого по объему мотора без вреда для него и без увеличения расхода горючего. Но существуют определенные особенности эксплуатации, соблюдение которых даст возможность повысить эффективность, и продлить общее время работы силового агрегата.

Устройство турбонаддува

Турбина двигателя, работающего на бензине, состоит из таких элементов:

  1. Корпус подшипников, размещающий в себе ротор с валом и кольцами с лопастями. Вращаясь, они перенаправляют воздух в цилиндры.
  2. Каналы, проходящие через весь корпус. Их функция заключается в доставке масла к вращающимся и трущимся друг о друга элементам, что способствует увеличению срока их службы.
  3. Подшипник скольжения, гарантирующий плавную работу ротора, смазываемого и охлаждаемого маслом.
  4. Корпус, по форме чем-то напоминающий улитку, защищающий составные элементы механизма от механических повреждений.

Турбонаддув: принцип работы

Задача турбины – нагнетать воздух в цилиндры, что осуществляется при помощи компрессора. Благодаря этому, смесь из топлива и воздуха насыщается кислородом, что приводит к увеличению КПД и улучшению сгораемости топлива. Таким образом, движок начинает работать эффективнее при прежнем объеме.

Чтобы понять принцип работы турбины на двигателе, сначала стоит разобраться с тем, как именно работает обычный двигатель. Его функционирование обеспечивается четырьмя последовательными тактами:

  1. Впуск – движение поршня обеспечивает попадание в камеру сгорания топливно-воздушной смеси.
  2. Компрессия – горючая смесь сжимается.
  3. Расширение – выработанная свечами искра приводит к возгоранию смеси.
  4. Выпуск – поршень перемещается вверх, освобождаются и выводятся выхлопные газы.

Чтобы повысить эффективность работы мотора, идти можно по одному из трех путей:

  1. установить турбонаддув;
  2. увеличить объем двигателя;
  3. повысить количество оборотов коленвала.

Увеличение объема, безусловно, приведет к повышению эффективности, но это неизбежно повлечет за собой повышенный расход горючего. Повышение оборотов коленчатого вала не всегда возможно по техническим причинам, к тому же, не избежать снижения эффективности из-за потерь энергии во время каждого из тактов.

Читать еще:  Лада 2114 1

Как работает турбонаддув? Он нагнетает в цилиндр предварительно сжатый воздух, вследствие чего количество поступаемого воздуха повышается, а мощность силового агрегата растет без увеличения его объема.

Когда бензиновый двигатель запускается, газы поступают в турбину, приводя с помощью своей энергии в движение ротор, раскручивающий колесо компрессора, захватывающее воздух, подаваемый в цилиндры. Компрессор увеличивает давление воздуха примерно на 80%.

Турбина на бензиновом двигателе позволяет повысить мощность примерно на 30%.

Эксплуатация турбины

Устройство турбокомпрессора делает его зависимым от качества масла, поэтому пытаться сэкономить на нем не стоит. Несвоевременно поменянное масло может стать причиной нарушений в работе механизма.

Автомобиль, оснащенный турбиной, нуждается после покупки в замене масла и тщательной прочистке топливной системы, при этом смешивать разные масла нельзя.

После продолжительной поездки сразу глушить двигатель не рекомендуется, дав ему немного поработать и охладиться. Резкое выключение может сказать на снижении прочности элементов конструкции, вызванном перепадом температуры.

Турбированный мотор: достоинства и недостатки

Популярность турбодвигателей вызвана их преимуществами перед обычными, заключающимися в:

  • увеличении мощности до 30% и уменьшении расхода топлива (турбомотор будет потреблять меньше горючего, нежели ДВС аналогичной мощности, но без турбины);
  • уменьшении загрязнения окружающей среды;
  • лучшем соотношении веса агрегата к развиваемой мощности;
  • более тихой работе механизма;
  • возможности оптимизировать другие параметры двигателя.

Однако есть и свои минусы:

  • требовательность к качеству масла и бензина, что в конечном итоге повышает расходы на эксплуатацию авто;
  • сложный ремонт, требующий применения специального оборудования, выполнить который своими силами маловероятно. Нередко турбина и вовсе оказывается непригодной к ремонту, а её полная замена заметно ударяет по кошельку автовладельца.

Принцип работы турбины: видео

Турбина: как работает, почему ломается и легко ли ремонтируется

Турбина: как работает, почему ломается и легко ли ремонтируется

Турбина, или, как ее правильно называть – турбокомпрессор, служит для нагнетания воздуха в цилиндры двигателя. Чем больше воздуха попадает в цилиндры, тем больше топлива можно с ним смешать и получить в результате более высокие мощностные характеристики двигателя без увеличения его рабочего объема.

Как устроена турбина

Турбокомпрессор имеет привод от потока выхлопных газов: жесткой связи с какими-либо движущимися частями двигателя у него нет. Это прерогатива, например, компрессора, который приводится непосредственно со шкива коленвала. На первый взгляд «турбина» устроена просто: представьте себе вал, на обои концах которого расположены две крыльчатки. Крыльчатки помещены в герметичные корпуса, «закрученные» на один оборот будто ракушки улитки. Турбинное колесо приводится от потока выхлопных газов: выхлопные газы воздействуют на лопасти турбины, раскручивают его и уходят дальше в выхлопную систему через центральное отверстие улитки. Соединенное валом с турбинным колесом компрессорное (насосное) колесо начинает вращаться с той же скоростью и нагнетать воздух во впускной коллектор. Компрессор всасывает воздух через центральное отверстие, передает его к лопаткам. При этом обеспечивается нагнетание воздуха под заданным давлением. Сжатый воздух направляется дальше во впускную систему двигателя: попадает в цилиндры, проходя через промежуточный охладитель-радиатор (интеркулер). Сжатому воздуху нужно охлаждение, т.к. при сжатии воздух неизбежно нагревается. Подавать нагретый воздух в камеры сгорания бессмысленно: моментально падает КПД двигателя.

Турбокомпрессор оснащен рядом компонентов, обеспечивающих его регулировку, управление и контроль. Часто на дизельных двигателях применяются турбины с «изменяемой геометрией». Геометрия тут действительно меняется, но не турбины как таковой, а ее направляющего аппарата, который представляет собой встроенные в «улитку» турбины планки-лопасти. Эти лопасти, подобно закрылками на крыльях самолета, меняют свое положение относительно насосного колеса. Лопасти приводятся от отдельного актуатора, управляемого соленоидом. Чем ниже скорость работы дизельного двигателя, тем меньше поток и давление выхлопных газов. Следовательно, лопатки принимают большой угол атаки, чтобы сильнее направлять газы на лопасти турбины. С ростом объема выхлопных газов угол атаки лопаток направляющего механизма снижается. Направляющего аппарата у турбин бензиновых двигателей не бывает – в нем нет нужды. Единственные бензиновые турбомоторы с регулируемой геометрией направляющего аппарата турбины применяются на 4- и 6-цилиндровых оппозитных моторах Porsche.

Зато на бензиновых моторах все большее распространение приобретают двухпоточные турбины, в английской терминологии twinscroll. Суть в том, что выпускной коллектор, подводящий выхлопные газы к турбине, «собирает» газы в два раздельных канала. Такое разделение (буквально как в коллекторе типа 4-2-1, также известному как «паук») позволяет снизить противодавление газов в выпускном коллекторе, улучшить его продувку и в итоге немного повысить эффективность двигателя. К тому же и поток газов к турбине в этом случае более равномерный.

Любые автомобильные турбины оснащаются перепускным клапаном (байпас, от англ. bypass – обход). Этот клапан служит для стравливания избытка сжатого компрессором воздуха в момент резкого закрытия дросселя (отпускания педали газа). Если этот воздух не стравливать, он пойдет из впускного коллектора обратно в противоход вращению крыльчатки, в результате чего возможно повреждение элементов ротора компрессора.

Также турбокомпрессоры оснащаются перепускной заслонкой или клапаном на выпуске. Этот клапан называется «уэстгейт» (от англ. wastegate – дословно «ворота растраты», или просто перепускной клапан). Он служит для того, чтобы направлять часть потока выхлопных газов в обход турбины. При этом ограничивается и контролируется скорость вращения ротора турбокомпрессора. Уэстгейт приводится от специального актуатора («вакуумника»), который управляется соленоидом. Обычно соленоид связан и с актуатором, и с впускным коллектором вакуумными трубками.

Важной частью любого турбокомпрессора являются подшипники, на которых удерживается и вращается вал. Подшипники обязательно нуждаются в смазке и охлаждении моторным маслом, которое подводится к ним по специально выделенным каналам. Иногда, в основном на гоночных автомобилях, подшипники турбокомпрессора охлаждаются антифризом (он омывает обоймы, а не сами подшипники).

Турбокомпрессор в целом не считается проблемным и капризным элементом силового агрегата. Эта деталь способна не доставлять проблем весь срок службы двигателя. Если экономить на обслуживании силового агрегата или ездить агрессивно и неаккуратно, снижается срок службы и мотора, и турбины.

Причины поломок турбины

Недостаток смазки и охлаждения

Чаще всего турбина выходит из строя из-за недостатка смазки подшипников, на которые опирается ее вал. Причины, которые привели к масляному голоданию, следует искать вне турбины. Эта поломка приводит к износу подшипников и их перегреву: масло не только смазывает, но и охлаждает. Обычно из-за масляного голодания нормальная рабочая температура подшипников и вала турбины подскакивает с 60-90°С до 400°С (к неотведенному теплу добавляется тепло, выделяемое в подшипниках при трении). При такой температуре остатки масла буквально горят, коксуются и еще сильнее засоряют маслопроводящие каналы и отверстия в подшипниках. Работающие «на сухую» перегретые подшипники быстро изнашиваются, зазор увеличивается до недопустимых размеров. В таких условиях вал турбины может потерять центровку. Это в свою очередь приведет к тому, что роторы турбокомпрессора начнут задевать за корпуса («улитки»). Турбокомпрессор получит серьезные повреждения и либо заклинит, либо разрушатся его внутренние детали.

То, как быстро произойдет поломка турбины и насколько серьезными будут последствия, зависит от характера масляного голодания. Нехватка масла может наступить быстро. Например, в случае обрыва маслопроводящей трубки или резкого уменьшения производительности масляного насоса. Резкое масляное голодание может погубить отремонтированную или новую установленную турбину. Эта неприятность случается при неправильной установке турбокомпрессора, когда в масляных каналах в картридже сохраняется воздушная пробка, которую масло не в состоянии продавить.

Медленное масляное голодание развивается в условиях небольшого недостатка масла из-за, например, снижения производительности масляного насоса, закоксованности масляной магистрали или их перегибов.

Периодическое масляное голодание обычно происходит при резкой остановке турбомотора после серьезных нагрузок. В этом случае прекращается смазка и охлаждение, но в полостях турбины сохраняется высокая температура, при которой масло коксуется и если не забивает масляные каналы, то уменьшает площадь их сечения. В перспективе это может привести к медленному масляному голоданию и связанных с ним поломках.

Загрязненное масло

Нередко моторное масло содержит в себе частицы износа трущихся деталей двигателя. Если фильтр не задерживает абразив, то он неизбежно попадет в масляные каналы турбины (и другие важные детали двигателя). В результате владелец столкнется с поломкой, вызванной износом подшипников, увеличением радиального люфта. В любом случае факты, приводящие к поломке, находятся в двигателе, а не в турбине.

Попадание посторонних предметов

И тут причины неисправности турбины, произошедшие из-за разрушения или повреждения ее лопастей твердыми частицами, лежат за пределами ее корпуса. Чтобы достичь лопастей ротора, обычно это ротор компрессора, посторонние частицы должны попасть во впускную систему двигателя. Как правило мусор прорывается через изношенный воздушный фильтр или через неплотные соединения впускных патрубков. Мелкие частицы вызывают локальные повреждения кромок ротора или их сошлифовывание.

Подпор картерных газов

Картерные газы так или иначе циркулируют в двигателе. Они образуются при прорыве газов из цилиндров через поршневые кольца. Любой двигатель оснащен системой вентиляции этих газов: без нее внутри двигателя (под клапанной крышкой и в картере) образовывалось бы избыточное давление, способное выдавить любые уплотнения двигателя (первыми в этом случае сдаются сальники коленвала или распредвалов). К тому же картерные газы несут в себе частицы сгоревшего топлива, которые обычно отфильтровываются в выхлопной системе.

Одним словом, если система вентиляции картерных газов засоряется или ее производительность снижается по другим причинам, избыточное давление может препятствовать стеканию масла из каналов турбины обратно в двигатель. В этом случае масло будет искать себе другую дорогу. Масло может просачиваться в холодную (компрессорную) часть: отсюда оно попадает в интеркулер, а оттуда – во впускные каналы и, следовательно, в камеры сгорания. Тут оно просто сгорает. В результате можно столкнуться с «жором масла», никак не связанным с состоянием ЦПГ.

Если масло будет уходить в горячую (турбинную) часть, то оно тоже сгорит под действием высоких температур. Правда, сгорание приведет к образованию масляного налета – закоксовыванию – внутри «улитки». Порой приходится сталкиваться с тем, что количество отложений бывает настолько большим, что ротор турбины начинает задевать за него и перестает свободно вращаться.

Также картерные газы могут достичь точек смазки и охлаждения подшипников. В этом случает происходит масляное голодание, закоксовывание маслопроводящих каналов. Все это вновь приводит к выходу турбокомпрессора из строя.

Симптомы неисправности турбины

Любые неисправности в системе наддува воздуха обычно связаны с несвоевременным и некачественным обслуживанием автомобиля либо его эксплуатацией в предельных режимах. Регулярные ТО по технологии производителя машины и применение сертифицированных материалов (масел, фильтров и т.д.) обеспечивают турбокомпрессору надежность и безотказность.

Причины поломок турбокомпрессора обычно кроются не в нем самом, а в двигателе. Если турбина начала подавать тревожные сигналы, то помимо ее ремонта нужно позаботиться о поиске неисправности и ее устранении. Возможно поломку вызвала та или иная подсистема силового агрегата. Если не устранить неисправность, отремонтированный или новый турбокомпрессор, установленный вместо дефектного, быстро выйдет из строя.

Симптомы неисправности турбины можно условно разделить несколько больших частей.

1. Падение мощности двигателя, снижение разгонной динамики. Этот симптом ощущается моментально водителем. Не сложно догадаться, что неисправность следует искать в недостаточном поступлении воздуха в двигатель из-за неисправной системы управления наддувом или его повреждения. Если при этом в моторном отсеке появляется задымление, то следует искать утечку выхлопных газов.

2. Дым из выхлопной трубы подозрительного цвета: сизого (белого, синего) или черного. Дым светлого цвета, валящий из выхлопной трубы при ускорении, является причиной сгорания масла в цилиндрах двигателя. Оно туда может попасть из-за утечек в турбокомпрессоре. Если масло попадает в камеры сгорания, то его следы можно обнаружить в интеркулере и во впускном коллекторе.

Черный цвет выхлопных газов свидетельствует о сгорании в цилиндрах обогащенной топливной смеси. В этом случае следует искать утечки воздуха в «холодной» части турбокомпрессора, включая интеркулер и впускной коллектор.

1. Снижение уровня масла – этот симптом может свидетельствовать как о сгорании масла в цилиндрах, так и о его утечках и сгорании внутри «улитки» турбины.

2. Посторонние шумы при работе турбокомпрессора могут быть вызваны как утечками воздуха или выхлопных газов, так и механическими повреждениями турбины (ее крыльчаток или подшипников).

Ремонт турбины: починка или замена?

Прежде чем решиться на манипуляции с турбиной нужно определить причину неисправности и устранить ее ведь дело может быть вовсе не в турбине. Если же по итогам диагностики была «приговорена» турбина, то и тут не стоит спешить с заменой. Турбокомпрессор – узел, состоящий из ряда компонентов, подлежащих замене и, иногда, ремонту. Можно отдельно поменять любой из роторов, актуатор, клапаны и даже корпус турбины. Также продаются ремкомплекты турбин со всеми необходимыми уплотнениями. Корпус, как правило, разборный: отдельно идут «улитки» турбины и компрессора и центральная часть, называемая «картриджем». В картридж входит центральная часть турбины с подшипниками, сальниками, валом и обоими роторами. Стоимость картриджа варьируется от 200 до 350 рублей. Замена обойдется еще в 200 рублей.

«Базовый» вариант ремонта турбины – это ее замена целиком. Стоимость «б/ушных» турбин на популярные модели автомобилей варьируется от 180 до 500 рублей. Стоимость новых и восстановленных турбин: от 600 до 1500 бел. рублей и выше.

В любом случае, неисправную турбину следует продиагностировать и определить вышедшие из строя детали. «Точечная» замена деталей может продлить жизнь турбокомпрессору и сэкономить деньги.

Как выглядит и где находится автомобильная турбина

Опубликовано Master в 13 марта, 2019

Двигатель является одним из наиболее важных компонентов автомобиля, а для его эффективной работы и максимальной производительности устанавливается турбина. Как выглядит и где находится автомобильная турбина? Для раскрытия данной темы понадобятся следующие тезисы:

Для чего нужна автомобильная турбина

Автомобильная турбина вместе с компрессором является одним из компонентов, необходимых для активации так называемого турбонагнетателя (турбонаддува). Это устройство служит для увеличения объема воздуха внутри двигателя, повышения его производительности и мощности при движении автомобиля. В частности, турбина представляет собой горячую сторону турбокомпрессора и активируется благодаря горячим выхлопным газам автомобиля. Её коллега, компрессор, напротив, представляет собой холодную сторону, выполняющую поглощение воздуха, который потом сжимается.

Турбина используется для сбора кинетической энергии и энтальпии (термодинамического потенциала), создаваемых газами, а затем для её преобразования в механическую энергию, которая используется для приведения в действие рабочего колеса компрессора. Последний сжимает воздух и поставляет его во впускной коллектор, таким образом, обеспечивая цилиндры двигателя возрастанием объема воздуха и, следовательно, большей мощностью для автомобиля.

Внешний вид автомобильной турбины

Часто автомобильные турбины называют «улитками». И в самом деле, внешний вид турбины напоминает моллюска. Но, в отличие от медлительной улитки, турбина способна внутри себя отработать мощную энергию для высокой производительности авто. Если рассматривать современную турбину с компрессором, но данный агрегат состоит из двух «улиток», одна проводит отработанные газы, а вторая прокачивает воздух в цилиндры. Но в комплексе система называется «турбонаддув», и состоит из множества деталей.

Автомобильная турбина в разрезе

Основным компонентом турбины с нагнетателем, который выполняет главную функцию, является крыльчатка с лопатками. Она вращается на высокой скорости до 200 000 оборотов в минуту, и действует как компрессор, закачивая поток воздуха в камеру турбины. Далее воздух сжимается, и уменьшается его объем. Но по законам физики, сжатый воздух способен нагреваться. И тут инженеры продумали отличное решение – использовали принцип промежуточного охлаждения воздуха.

Так появилась деталь под названием «интеркулер». Он стал теплообменником, охлаждающим воздух благодаря хладагенту. Интеркулер также увеличивает мощность мотора до 20%, и предотвращает детонацию выхлопного газа.

Если ли разница между турбиной в дизельном и бензиновом двигателе? Её практически нет. Главное отличие – это степень наддува. В дизельных двигателях необходимо большое давление, и по этой причине в них более мощные нагнетатели воздуха. Бензиновые двигатели оснащены нагнетателями меньшей мощности, поскольку высокое давление в камере сгорания способно привести к детонации.

Где расположена турбина в авто

Где находится турбина в машине? Всё очень просто – «улитку» легко распознать и найти встроенной в сам двигатель. Как правило, двигатели современных автомобилей оснащены турбонаддувом. Все дизельные и спортивные автомобили обязательно со встроенными турбинами, ибо без них невозможно развить необходимую мощность для пробега.

Турбина в двигателе автомобиля (“улитка”)

Если в заводской модели авто есть турбокомпрессор, владельцу не нужно будет беспокоиться о каких-либо дополнительных деталях, потому что двигатель транспортного средства уже разработан для обработки мощности, генерируемой турбиной. В случае отсутствии турбины в машине, лучше обратиться к специалисту, который поможет выбрать подходящую модель турбины под двигатель и модель авто.

Как работает турбина на авто? Рассматриваем в подробностях

Сам разговор об устройстве этого агрегата стоит начать издалека, т. к. это даст всесторонние понимание сути вопроса. Саму турбину много слышали по характерному свисту, который она выдает в ходе работы. Итак, начнем разбираться.

Как работает турбина на авто? Как отмечалось выше, ответ на этот вопрос следует начать с рассказа общего устройства двигателя внутреннего сгорания. Мощность двигателя имеет прямую зависимость от объема, а точнее от рабочего объема цилиндра и их количества.

Также на этот показатель может влиять количество воздушно-топливной смеси, которая подается в рабочие отсеки двигателя, но не надо забывать, что при этом подразумевается еще и эффективное ее сгорание.

Как вы понимаете принцип простой, чем больше сгорает топлива, тем больше требуется воздуха для этого процесса. Именно турбина обеспечивает дополнительный приток воздуха в камеры сгорания двигателя.

Как устроен двигатель внутреннего сгорания?

В процессе работы двигателя выделяют 4 цикла. Подавляющее большинство современных автомобилей оснащаются так называемыми 4-х тактный двигатель. Работа такого агрегата обеспечивается набором впускных и выпускных клапанов цилиндров. Разберем каждый из тактов работы. Впускной — на данном этапе поршень двигателя идет вниз от свечи, камера сгорания в это время наполняется воздушно-топливной смесью.

Хочется отметить, что именно от этого зависит разница между дизельными и бензиновыми двигателями. Бензиновый двигатель работает на воздушно-топливной смеси, а в дизель на этом этапе поступает только воздух.

Следующий такт характеризуется компрессией, в момент которой за счет подъема поршня вверх происходит сжатие смеси. Такт, на котором смесь воспламеняется за счет искры, образованной свечами зажигания, происходит расширение. Именно данный этап создает нагрузки на рабочую поверхность поршня и заставляет его двигаться. Конечный этап, выпуск происходит при движении поршня вверх, через клапан происходит выпуск отработанных газов.

Читать еще:  TopRadar › Блог › Как выбрать парктроник для автомобиля и есть ли у них какая-нибудь разница

Как работает турбина?

Турбина имеет специальную крыльчатку-нагнетатель, которая размещается на общем валу с крыльчаткой, встроенной в выпускной коллектор. Как вы понимаете, вторая крыльчатка приводится в действие с помощью отработанных газов. Кстати, скорость вращения крыльчатки может доходить до безумных значений.

У турбины есть один значительный минус. Если резко нажать на педаль акселератора, необходимо некоторое время, чтобы увеличилось давление выхлопного газа.

На автомобилях, оснащенных турбиной, наблюдается такое явление как турбояма, оно образуется именно из-за этой причины. Более продвинутые современные автомобили ведущих концернов, практически лишены этой особенности.

Статья по теме: «Что лучше турбина или компрессор».

Подводим итоги

Надежность турбины зависит в первую очередь от применяемых в ее конструкции подшипников. Именно они определяют, чаще всего ее срок службы. Поскольку скорость вращения крыльчатки достигает очень высоких оборотов, обычные подшипники имели высокую степень выработки и короткий срок службы. Картину сгущали высокие температуры.

Как мы видимо, принцип работы турбины прост, двигатель нагнетает воздух в рабочую камеру за счет собственных оборотов. Грубо говоря, в цилиндры поступает ровно столько воздуха, сколько и раньше, просто происходит его дополнительная компрессия. Теперь вы знаете как работает турбина на авто и что определяет ее срок службы. Починкой турбин самостоятельно лучше не заниматься, рекомендуется доверить это мастерам на СТО.

Полезная информация? Сохраните у себя, чтобы не потерять

Что такое турбированный двигатель

Современные тенденции автопроизводителей сделали ставку на компактный турбированный двигатель. Это дало ряд преимуществ, среди которых компактность, экономичность, экологичность и максимальный КПД при малых объемах.

Основные отличия турбированного двигателя от атмосферного

Если атмосферный двигатель подразумевает впуск воздуха посредством разряжения, созданным поршнем, то с турбированным мотором все иначе. Для максимально эффективного сгорания топлива необходимо большое количество воздуха, чего невозможно добиться от атмосферника, поэтому нужно было воздух, в большом объеме, «затолкать».

В атмосферном силовом агрегате крутящий момент и мощность во многом зависит от объема цилиндров, что и стало основным отличием от турбомоторов.

Особенности турбированных двигателей

Принцип работы турбины состоит в принудительном нагнетании воздуха под давлением в цилиндры. Такое действие позволяет увеличить рабочий объем камеры сгорания за счет сильного сжатия, поэтому при равном объеме двигателя, разница в мощности между атмосферником и турбомотором колоссальная.

Главные предпосылки появления турбированных моторов:

  • Невозможность существенного увеличения мощности без увеличения объема и количества цилиндров (отсюда мы имеем агрегаты V8 и V12)
  • «Выжимание» максимальной мощности с помощью уменьшения камеры сгорания увеличивает степень сжатия, а значит работа двигателя без детонации невозможна. Детонация разрушает поршни.
  • Любые манипуляции по увеличению мощности атмосферника увеличивают расход топлива, а также делают невозможным комфортную эксплуатацию во всем диапазоне оборотов двигателя.

Изначально в массовое производство был запущен дизельный турбированный двигатель — такие моторы «наматывали» миллионы километров без особых проблем. В 80-х годах прошлого века среди легковых автомобилей начали появляться бензиновые турбоагрегаты.

Стоимость таких автомобилей существенно отличалась от обычных. До 90-х годов широко использовались механические нагнетатели, приводящиеся в движение через ремень от коленвала. Конструкция довольно проста и надежна, о чем свидетельствует яркий пример в лице двигателя Mercedes-Benz M111 E23 Compressor.

Позднее решено было переходить на турбокомпрессор, работающий от выхлопных газов, так как механический нагнетатель забирал значительную мощность на раскручивание лопастей.

Как работает турбина

Турбина состоит из двух частей:

  1. Холодная – всасывает и раскручивает впускной воздух,
  2. Горячая – раскручивается воздух посредством движения выхлопных газов.

В турбине установлен картридж с лопастями, которые от движения воздуха раскручиваются вплоть до 150 000 оборотов в минуту, создавая давление. Вращаются лопасти на подшипниках, а за смазывание и охлаждение отвечает подача масла с двигателя.

Так как при резком повышении давления воздух сильно нагревается, был изобретен интеркуллер, охлаждающий воздух до нужной температуры.

Во впускной магистрали установлен клапан, отвечающий за сброс избыточного давления впускного воздуха (Blow off), а также вестгейт, ограничивающий количество отработанных газов, попадающих в турбину, что позволяет избежать резкого роста повышения оборотов крыльчатки (простыми словами-ограничитель).

Работа турбины крайне проста: в горячую часть турбины попадают отработанные газы и раскручивают крыльчатку. В холодной части раскрученная крыльчатка всасывает большое количество воздуха, который проходит через интеркулер, и в охлажденном состоянии попадает в цилиндры. После того, как отработанные газы раскрутили турбину, они идут далее по выпускной магистрали.

Турбированный двигатель, плюсы и минусы

Сначала о преимуществах:

  1. Возможность с малого объема “выжать” большую мощность, зачастую это 100 л.с. на каждый литр объема.
  2. Крутящий момент уже с холостых оборотов дает уверенную тягу, но только в случае, если турбина маленькая, она раскручивается быстрее.
  3. Диапазон крутящего момента широкий.
  4. Расход топлива, при одинаковой мощности с атмосферным моторов, явно ниже.
  5. Возможность увеличивать мощность с помощью прошивки на 20-30% без вреда ресурсу и комфорту движения.
  1. Ресурс турбины современных авто едва достигает 100 тыс.км.
  2. Возникновение «турбоямы», процесса между провалом и резким набором скорости из-за ожидания раскрутки турбины.
  3. Стоимость ремонта дороже, обслуживать двигатель нужно чаще.
  4. Возрастает потребность в качественном масле и топливе.

Отличие от механического нагнетателя

Приводной нагнетатель широко используется на американских автомобилях с V-образными «восьмерками». Явной потери мощности не ощущается в силу большого объема, зато компрессор уже с холостых оборотов обеспечивает стабильный крутящий момент. К тому же, конструктивно приводной компрессор удобнее и дешевле, чем установка двух турбин.

Турбина, работающая от выхлопных газов, значительно повышает КПД, а его сопротивление приравнивается к 0, так как используется энергия отработанных газов.

У приводного компрессора есть два недостатка: повышенный шум работы и потери мощности на раскручивание.

Основной проблемой турбированного двигателя является незнание правильного ухода и обслуживания таких агрегатов. Турбомоторы требуют более частого внимания, в таком случае дорогой ремонт турбины можно отсрочить на долгие годы.

Что такое турбонаддув

Такая вот небольшая с виду «улитка» — один из самых действенных способов увеличить мощность двигателя.

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? нас и поджидают проблемы.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, , температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.

На рядных двигателях зачастую используется одиночный турбокомпрессор (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах

Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».

Как работает турбина двигателя — устройство и принцип работы турбины

Турбонаддув как средство повышения мощности любого двигателя, будь то бензиновый или дизельный агрегат, по праву считается самым высокоэффективным. Также данная система позволяет снижать токсичность отработанных газов за счет более полного сгорания топлива и снижения его потребления. Востребованность наддува в современном автомобилестроении объясняется еще и тем, что он осуществляется за счет энергии отработавших газов. То есть КПД данного узла не вызывает сомнений. Особенно, если речь идет о дизельных моторах, характеризуемых высоким показателем компрессии при достаточно небольшой частоте коленвала.

Дополнительным сдерживающим фактором для включения этого устройства в схему бензиновых силовых агрегатов является следующий факт: как работает турбина двигателя, не имеет особого значения, но этот процесс сопровождается высоким риском детонации и обязательным повышением температуры отработавших газов.

Устройство и принцип работы турбины

Принципиальная схема системы турбонаддува в ходе ее разработки претерпевала много изменений. На данный момент ее можно считать максимально модернизированной и упрощенной, что обеспечивает стабильность работы при низкой вероятности появления неисправностей.

Турбонагнетатель, являющийся главным компонентом системы повышения мощности, представляет собой крыльчатку с лопастями, которая вращается со скоростью, сравнимой только с данным показателем у стоматологического бура – не менее 100 000 об./мин. Это позволяет выполнять функцию компрессора, закачивающего в специальную камеру большие объемы воздуха. В ходе этой процедуры воздух сжимается, и поэтому автоматически нагревается – это и есть главный недостаток того, как работает турбина.

Интеркулер. В стремлении решить данный вопрос автоконструкторы продумывали массу способов для охлаждения воздуха в процессе его перехода в силовой агрегат. В результате был придуман так называемый интеркулер, название которого говорит за себя – он должен выполнять функцию промежуточного понижения температуры вещества, проходящего через него. Для того, чтобы обеспечивать данный процесс, в устройстве находится хладагент, что позволяет задействовать эффект теплообменника. Впрочем, в отдельных моделях охлаждающая жидкость отсутствует, и дело ограничивается лишь воздухообменом. Несмотря на достаточно сложную конструкцию, интеркулер способен не только на порядок снижать вероятность детонации двигателя, но и повышать мощностной показатель агрегата до 20%.

Принцип работы турбины в «дизелях» и бензиновых моторах абсолютно идентичен, разница заключается лишь в степени наддува. Для увеличения мощности дизельных агрегатов требуется больше давления, по этой причине они оборудуются более габаритными нагнетателями. Соответственно, у атмосферников они имеют меньшие размеры – если нарушить это правило, в камерах сгорания может начаться детонация топлива.

Регулятор давления . Он также является одним из главных компонентов системы и, по большому счету, работает как перепускной клапан, регулирующий энергию отработавших газов. Ведь работа турбины без такого ограничителя приводит к тому, что в какой-то момент давление воздуха становится избыточным, что и приводит к детонации. Поэтому регулирующий механизм обеспечит оптимальное давление воздуха, отводя часть отработанных газов от крыльчатки турбокомпрессора. Данный клапан может иметь как пневмо- так и электрический привод, но в любом случае его активация происходит от электронного датчика давления.

Кроме того, в некоторых моделях нагнетателей присутствует и предохранительный клапан, который защищает узел от скачков давления. А такие колебания в сторону увеличения очень часто происходят во время резкого закрытия дроссельной заслонки, когда потребность в воздухе для полноценного сгорания топлива мгновенно уменьшается. Чтобы стравить избыток давления, предохранительный клапан выпускает воздух в атмосферу за счет спецклапана либо перепускает его на вход компрессора.

Условия нормальной работы турбонаддува

Как и любой узел двигателя, турбокомпрессор требует соблюдения определенных правил эксплуатации. В противном случае увеличение мощности становится незначительным, а потребление горючего резко возрастает. Приведем несколько основных нюансов, которые обязательно стоит учитывать владельцам турбированных автомобилей.

Читать еще:  Семейные автомобили с большим багажником и клиренсом: ТОП-10

1. Когда коленвал мотора вращается, а масляная помпа нагнетает масло, принцип работы турбины двигателя полностью соблюдается. Однако в момент остановки агрегата обездвиживается и жидкостный насос, что приводит к моментальному падению давления масла в системе до нулевой отметки. В то же время вал с крыльчаткой нагнетателя, имеющий весьма приличный вес, по инерции продолжает вращаться на высоких оборотах. При этом так называемый масляный «клин» уже отсутствует, смазывающий материал приобретает полужидкую или пограничную консистенцию. Это вызывает в подшипниках перегрев, в результате которого они часто заедают. Кроме того, если моторное масло давно не менялось, оно тоже вызывает интенсивный износ элементов системы. И особенно тех же самых подшипников качения, испытывающих большие нагрузки.

2. Выводы из описанной ситуации закономерны: чтобы в то время, как работает турбина и после остановки двигателя не возникало проблем, нужно вовремя менять моторное масло. А заодно и фильтр. Помимо этого, заливать в агрегат следует только ту смазку, которая специально предназначена для турбодвигателей. Выбрать ее из широкого спектра предлагаемых сегодня хороших масел – дело пары минут.

3. В дороге может случиться что угодно, в том числе и «погнать» масло. В таких случаях вполне допустимо долить любую смазку, лишь бы доехать до места ремонта. Однако при этом гнать ни в коем случае нельзя: если «сердце» автомобиля и перетерпит неизвестную марку масла, то система турбонагнетания вряд ли. Разумеется, по приезду домой следует сразу же слить весь смазывающий материал и залить рекомендованный производителем. Причем весьма желательно произвести замену и масляного фильтра, так как его активные элементы тоже способны пострадать от непривычной смеси.

4. Данное условие нормальной работы турбонагнетателя можно с уверенностью назвать самым главным. Как известно, для двигателя есть два очень ответственных момента – запуск и остановка. А в момент старта в агрегате масло имеет высокую степень вязкости, из-за чего с трудом прокачивается по тепловым зазорам. И даже если мотор частично прогрелся, тепловое расширение у компонентов турбокомпрессии будет разным. По этой причине перед началом поездки следует хорошенько прогреть двигатель – тем самым водитель обеспечивает и эффективную работу турбины.

Во-вторых, во время остановки не рекомендуется сразу же глушить мотор. Он должен на холостом ходу поработать хотя бы пару минут, причем зимой этот временной интервал должен составлять минимум 5 мин. Это нужно для того, чтобы крыльчатка, насаженная на вал с подшипниками, снизила свое вращение до минимального показателя. Кроме того, требуется время, чтобы сильно нагретые во время интенсивной работы вал и крыльчатка постепенно остыли. Этому процессу будет способствовать и масло, по-прежнему нагнетаемое с большой интенсивностью: оно охладит вал и подшипники, при этом само не успеет нагреться.

Если не соблюдать данное правило, то при внезапной остановке двигателя поступление масла в систему прекратится, а очень нагретая крыльчатка нагнетателя отдаст почти все свое тепло валу. В итоге масло, обволакивающее компоненты компрессора, разогреется до температуры, близкой к температуре возгорания. При этом начинает интенсивно образовываться нагар в месте «посадки» уплотнительного кольца. Несколько меньше этот процесс касается корпуса турбины и подшипников качения. И спасти систему от поломки сможет только масло, предназначенное для турбированных двигателей – оно рассчитано на большую рабочую температуру, чем стандартная синтетика и полусинтетика. Однако даже такая смазка имеет предел своих возможностей.

Диагностика нагнетателя воздуха

Как определить без специальных приборов, что турбокомпрессор сломался? Во-первых, об этом свидетельствует падение мощности мотора. При этом из глушителя валит плотный белый дым, а расход смазывающего материала нередко вырастает до нескольких литров на 100 км. Это означает, что нагнетатель нужно немедленно сдавать в ремонт либо покупать новый – иногда замена изношенных подшипников и уплотнительного кольца не дает положительного результата.

Во-вторых, часто возникают ситуации, когда белая дымовая «завеса» как таковая отсутствует. Вот только двигатель никак не может выйти на положенную ему мощность, и никакого сигнализатора на панели приборов не загорается. Выход у владельцев турбированных автомобилей только один – срочный заезд в автосервис. Владельцам турбодизелей проще: о проблеме с нагнетателем воздуха красноречиво свидетельствует черный дым на холостых оборотах. Причем далеко не факт, что турбосистема безнадежно отказала – она может быть просто изношенной и вполне ремонтопригодной.

Турбонаддув — принцип действия, достоинства и недостатки

Статья о том, что такое турбонаддув, как он работает, его основные плюсы и минусы. В конце статьи — видео об особенностях и принципах работы турбонаддува.

Содержание статьи:

  • Для чего нужен турбонаддув
  • Устройство и принцип работы турбонагнетателя
  • Преимущества турбонаддува
  • Недостатки
  • Видео об особенностях и принципах работы турбонаддува

Автомобильный двигатель должен обладать такими характеристиками, которые позволили бы ему не отставать от современности. Технические усовершенствования с каждым годом даются все труднее, потому что велосипед-то изобретать никому не хочется, а улучшать качество мотора необходимо.

Поэтому весьма неплохим решением является использование системы принудительного нагнетания воздуха в камеру сгорания. Самые последние инженерные конструкции охватывают не только улучшение принудительного нагнетания воздуха в топливную систему, но и установку такого же устройства в систему выхлопа отработанных газов.

Для чего нужен турбонаддув

Чтобы понимать важность работы турбонаддува и принцип его действия, необходимо знать, что двигатель не может потреблять топливо в чистом виде. Для вспышки бензина в герметичной емкости нужен воздух, иначе двигатель работать не будет.

То есть, в камеру сгорания должна поступать смесь, состоящая из топлива и воздуха в нужной пропорции. В цилиндре эта смесь сгорает. Появившиеся в результате сгорания газы совершают свою главную работу и затем удаляются через систему выхлопа.

Проще говоря, с помощью турбонаддува воздух сжимается, и в камеру сгорания он поступает в большем количестве, нежели при атмосферном давлении.

Устройство и принцип работы турбонагнетателя

Главная деталь нагнетателя, выполняющая основную функцию – это крыльчатка с лопастями. Вращаясь с огромной скоростью (200 тыс. оборотов в минуту) и действуя как компрессор, она закачивает воздух в турбинную камеру.

После этого происходит сжатие воздуха, за счет чего объем, который этот воздух занимает, уменьшается. Однако давно известно, что по законам физики во время сжатия воздух имеет свойство нагреваться. И это является главным недостатком системы турбонаддува.

Разумеется, эта проблема не могла пройти мимо внимания конструкторов. Решая эту задачу, специалисты попробовали использовать промежуточное охлаждение воздуха на пути его перехода в двигатель.

В результате появился интеркулер. В этом устройстве применяется эффект теплообменника, который имеет свойство охлаждать воздух за счет хладагента. Интеркулер способен увеличить мощность мотора до 20%, и при этом он еще снижает вероятность детонации выхлопных газов.

Особой разницы между турбонаддувом бензиновых и дизельных двигателей почти нет. Отличие лишь в степени наддува. Дизельные двигатели требуют большего давления, и поэтому они оснащены более мощными нагнетателями воздуха. В бензиновых моторах установлены нагнетатели меньшей мощности, потому что при слишком большом давлении в камере сгорания может возникнуть детонация.

Преимущества турбонаддува

«Дармовая» дополнительная мощность. Существует расхожее мнение: наличие добавочной турбины на выхлопном коллекторе мотора порождает добавочную энергию, которая должна вращать точно такую же турбину на впуске, в результате чего выхлопные газы становятся бесплатным источником энергии для нагнетателя.

Однако эта концепция весьма спорная, потому что существует так называемое сопротивление выпуска. Автомобильные конструкторы многие десятилетия добивались снижения этого сопротивления, потому что именно в этом случае повысится мощность двигателя.

Для этого в систему монтируется специальное генерирующее устройство, которое значительно снижает выходное сопротивление. Поэтому было бы неправильным считать работу турбонаддува на дармовой энергии. «Дешевая придаточная энергия» — это будет звучать более точно.

В техническом отношении этот процесс не представляет ничего сложного. Нагнетатель представляет собой устройство, состоящее из двух колес – компрессорного и турбинного. Турбинное колесо захватывает выхлопные газы, приводящие его в движение. В результате начинает вращаться и компрессорное колесо, которое и служит для сжатия воздуха.

Компрессор в обязательном порядке контактирует с системой охлаждения, потому что в процессе действия его температура поднимается довольно высоко. Сила наддува регулируется с помощью перепускного клапана. В случае необходимости он может переводить часть выхлопа мимо турбины, чтобы понизить внутрисистемное давление.

Повышение мощности двигателя без увеличения его объема и массы. Технология турбонаддува позволяет повышать мощность двигателя без увеличения объема цилиндров и их количества. В результате легкие и небольшие по размеру моторы приобретают отличные характеристики, и, кроме этого, сокращается общая масса автомобиля, уменьшаются тормозной путь и время разгона.

Экономичность. Расход топлива у двигателей, оснащенных системой турбонаддува, в разы меньше, нежели расход топлива у мотора такой же мощности с простым атмосферным нагнетанием воздуха. Это объясняется тем, что в цилиндрах с турбонаддувом на один ход поршня тратится намного меньше топлива за счет полного его сгорания. То есть, бедная смесь компенсируется дополнительным напором воздуха, и в результате мощность увеличивается.

Недостатки

Зависимость от оборотов. «Турбояма». Проблема заключается в следующем: нет активного ускорения при разгоне на малых оборотах. Динамика разгона слабая, уступающая даже машинам с атмосферным нагнетанием. А все дело в том, что при малых оборотах энергия выхлопных газов слабая, и, соответственно, турбина нагнетателя тоже вращается слабо, создавая минимальное давление смеси в камере сгорания. То есть, нужный эффект от турбонаддува возникает только при высоких оборотах двигателя.

Кроме этого, есть еще одна проблема: медленность процесса нагнетания воздуха. Действительно, для того, чтобы создать нужное давление на впуске, необходимо некоторое время. Специалисты проводят инженерные исследования в этой области, и уже в какой-то степени удалось уменьшить этот интервал в динамике работы нагнетателя.

Помимо этого, наличие вариатора или автоматической трансмиссии дает возможность машине во время разгона автоматически переключаться на пониженную передачу. За счет этого вредные последствия от инертности нагнетателя ликвидируются.

Сегодня имеются следующие способы решения проблемы инертности турбонаддува:

  • битурбонаддув (двойной наддув);
  • турбина с адаптивной геометрией;
  • комбинированный наддув.

При двойном турбонаддуве применяются две небольшие турбины, которые в совокупности работают намного быстрее, чем одна с номинальным размером. Число цилиндров распределяется между этими турбинами поровну. Аналогом такой системы может быть применение нескольких компрессоров, которые приходят в движение на разных оборотах мотора, каждый в своем режиме.

Турбина с адаптивной геометрией способна изменять размер впускного канала и тем самым регулировать силу потока выхлопных газов, что также повышает эффективность работы системы.

Комбинированный наддув состоит из турбокомпрессора и механического нагнетателя. Нагнетатель создает нужное давление на малых оборотах, но как только обороты возрастают до определенной величины, в работу включается турброкомпрессор.

Высокая температура. Как уже было сказано, сжатие воздуха влечет за собой его нагрев, что отражается на работе мотора не самым лучшим образом. Поэтому зачастую приходится подключать дополнительное охлаждение, и на это уходит часть энергии.

Однако несмотря на перечисленные недостатки, турбонаддув – это отличное средство для повышения мощности и эффективности ДВС, а также его экономичности. Кроме того, многолетний опыт специалистов показывает, что варианты усовершенствования этой системы еще не исчерпаны.

Видео об особенностях и принципах работы турбонаддува:

Как работает турбина машины. Принцип действия, а также мое подробное видео

Часто новички мне задают вопрос – а как работает турбина? Конечно же, это применительно к машинам (однако они применяются много где). Интерес к этому агрегату растет день ото дня, все потому что сейчас на рынок выходит все больше турбированных моторов. Обусловлено это увеличение производительности, а также экологическими нормами. Как не прискорбно, но думаю — через лет так скажем 10 – 15, обычных атмосферников уже и не останется …

СОДЕРЖАНИЕ СТАТЬИ

  • Двигатель внутреннего сгорания – атмосферный
  • Как работает турбина?
  • Турбо-яма
  • Интеркулер
  • Минусы турбин

Для начала небольшое определение.

Турбина автомобиля – это агрегат, который призван повысить производительность двигателя внутреннего сгорания, за счет увеличения крутящего момента – следовательно, и лошадиных сил. Даже при малом объеме такая силовая установка может обойти обычный атмосферный двигатель большего объема.

Как видите устройство «вроде как» полезное, причем оно поднимает КПД мотора, примерно на 10 – 20%, что очень существенно!

Если сказать простыми словами — то при малом объеме, мы получаем больше мощности!

Отличить обычный и турбированный двигатель, можно даже на слух, достаточно запустить их и послушать. Турбина издает небольшой свист, который будет все сильнее, если обороты двигателя растут. Если положить руку на сердце, турбину, возможно установить на любой обычный атмосферный двигатель, главное правильно ее настроить, поэтому для начала давайте вспомним обычный вариант.

Двигатель внутреннего сгорания – атмосферный

Принцип давно уже изучен и я бы сказал «избит»! Большинство моторов имеют четырехтактный цикл, конечно есть и двухтактные, но они на автомобилях применяются редко. Как мы можем знать, работа основана на компрессии, вот почему это такой важный показатель, и он должен быть всегда в норме.

1 такт – поршень идет вниз, открываются впускные клапана и в цилиндры поступает воздушно-топливная смесь.

2 такт — сжатие – поршень идет «максимально» вверх, сжимая смесь.

3 такт – воспламенение – сжатая смесь воспламеняется от свечей зажигания, происходит мини взрыв, который толкает поршень вниз.

4 такт — выход отработанных газов – открываются другие клапана, которые выводят эти газы, выталкивает их поршень, который также идет наверх.

Эта «классика» работает вот уже много лет, с момента основания двигателя внутреннего сгорания. Сразу хочется отметить мощность у такого классического строения – повышается за счет увеличения объема цилиндров. ТО есть двигатель объемом в 1,4 литра будет заведомо слабее, чем вариант в 2,0 литра. Но относительно недавно (если брать историю моторостроения), появились первые турбины, которые устанавливаются на этот классический двигатель, и меняют расклад сил.

Как работает турбина?

Завораживающее слово «ТУРБО», для многих мальчишек это просто предел мечтаний – некоторые так и хотят прокачать свою ПРИОРУ и «лихачить» по городу. Однако чтобы тюнинговать свой автомобиль, нужно знать устройство турбины.

Итак – основная задача, этого аппарата нагнетать в двигатель как можно больше воздуха. Я бы даже сказал нагнетать с силой!

Для чего это делается – как мы уже поговорили сверху, поршни приводятся в движение за счет сжигания воздушно – топливной смеси, которая поступает в цилиндры. Чем больше ее поступило, чем больше мощность может развить силовой агрегат. Сам мотор может засосать ограниченное количество воздуха – вот бы было хорошо, если бы кто-то его туда закачал в большем объеме!

И этим как раз и занимается турбина. Она раскручивается до безумных значений, порядка 200 – 240 000 оборотов в минуту. И под давлением подает максимально много воздушной смеси в цилиндры двигателя. Это означает что при одинаковом объеме, можно сжигать намного больше этой смеси, что напрямую передается и мощности!

Если взять строение турбины – то здесь можно выделить две крыльчатки.

Первая вращается от давления отработанных газов, которые идут через глушитель, к ней жестко подсоединен вал.

Вторая крыльчатка, также сидит на валу, только с другой стороны и ей передается это вращение. Она начинает засасывать воздух (если хотите как пылесос), и под давлением нагнетать его в двигатель.

Вал, на котором сидят две крыльчатки (условно назовем их «горячая» и «холодная»), имеет подшипники, которые смазываются маслом двигателя (помимо смазывания, оно забирает и лишнюю температуру), чтобы масло не уходило в отсеки с крыльчатками, за подшипниками есть специальные изоляторы, которые тормозят его расход.

Как видите принцип работы очень простой. Если все же не поняли, посмотрите мое видео с разъяснением.

Турбо-яма

Минусом работы турбированного агрегата, является такое явление как «турбо-яма» (подробнее здесь). При низких оборотах турбина раскручивается не сильно, а поэтому не способна нагнетать большое количество воздуха. Если вы резко давите на педаль газа — то нужно какое-то время чтобы отработанные газы дошли до крыльчатки турбины и раскрутили ее! Однако пройдет немного времени, 1 – 2 секунды, прежде чем произойдет «выстрел» динамики.

В народе это явление называется турбо-ямой, то есть прежде чем резко ускориться, нужно подождать 1 или 2 секунды, пока раскрутится турбина.

Конечно, сейчас есть такое понятие как «ТВИН-ТУРБО» или «БИ-ТУРБО» – к обычной турбине подсоединяют еще одну, как правило – механическую (а с недавнего времени и электрическую), которая работает на низких оборотах, нагнетая нужное количество воздуха на низах, затем когда обороты вырастают, включается основная. Таким образом, турбо – яма побеждается.

Интеркулер

Про него также у меня есть статья (подробно здесь). Воздух, который нагнетается в цилиндры, под «бешеными» оборотами крыльчатки – нагревается. А при нагреве падает плотность и концентрация кислорода. Чтобы его охладить применяется такое устройство как – интеркуллер, он охлаждает поток, делая его более плотным, что положительно сказывается на производительности.

Минусы турбин

Минусы у этого агрегата также существенны:

1) Это более частая замена масла, потому как подшипники очень требовательны к качеству смазки (все же там просто огромные обороты).

2) Ресурс не такой большой, обычно ходят по 150 000 километров.

3) Дорогостоящий ремонт, если менять на немецком автомобиле, то это примерно от 70 000 рублей.

4) Топливо – с турбиной нужно заправляться высокооктановыми бензинами, не ниже 95, что «бьет» по кошельку.

5) Охлаждение турбины – старые варианты таких устройств, нужно было правильно охлаждать. Иначе если вы просто заглушите машину, то от перепада температур, крыльчатку просто может «покоробить», далее ремонт. Поэтому, придумали турботаймеры, они не дают двигателю сразу заглохнуть, а несколько минут работают на низких оборотах – охлаждая крыльчатку.

Вот такой вот агрегат эта турбина, из сегодняшней статьи вы поняли – как она работает, теперь вы «подкованы».

НА этом заканчиваю, думаю было интересно.

(16 голосов, средний: 5,00 из 5)

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector