Nd-avtodrom.ru

НД Автодром
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Бесконтактная система зажигания: устройство и принцип действия схемы

Что означает бесконтактная? А нет контактов и нет проблем

В статьях о контактной и контактно-транзисторной системах зажигания мы упоминали о существенных недостатках таких схем. Поэтому светлые инженерные умы продолжили совершенствовать конструкции узлов и следующим технологическим шагом стала бесконтактная система зажигания.

Бесконтактная, в чем фишка?

Как вы, наверное, помните, проблемы, имеющиеся в контактных системах зажигания автомобилей, были связаны с механическими частями.

Если точнее, то от импульсов тока, возникающих при подаче напряжения на катушку зажигания, частенько обгорали контактные группы прерывателя и распределителя, да и вообще они из-за постоянного трения сильно подвергались физическому износу. Эти проблемы частично были решены в контактно-транзисторном варианте, но всё же до идеала ещё было далеко.

Новым шагом на пути решения проблем стала бесконтактная система. В ней разработчики решили полностью отказаться от контактного прерывателя и заменили его новым узлом — бесконтактным датчиком. О том, какую именно роль выполняет данное устройство, читайте далее.

Бесконтактный датчик: кто таков и чем полезен?

На самом деле бесконтактная система зажигания принцип работы которой мы сегодня рассматриваем, конструктивно не сильно отличается от своих предшественников.

Алгоритм функционирования остался прежним, но она напрочь лишилась каких-либо механических контактов в низковольтной части. Чтобы разобраться с тем, как всё работает, давайте взглянем на устройство бесконтактной системы. Она состоит из таких элементов:

  • аккумуляторная батарея и генератор;
  • замок зажигания;
  • датчик импульсов;
  • транзисторный коммутатор;
  • катушка зажигания;
  • распределитель;
  • регуляторы угла опережения зажигания;
  • свечи.

Как Вы могли заметить, многие из этих элементов уже знакомы нам. Принципиально новым в списке узлов бесконтактной системы зажигания является датчик импульсов, который заменил собой прерыватель, присутствующий как в классической контактной схеме, так и в её более совершенном транзисторном варианте.

Он при помощи специального элемента отслеживает частоту вращения коленвала мотора. В роли такого элемента может быть датчик Холла (наиболее распространённый вариант), который генерирует электрические импульсы в зависимости от изменения магнитного поля, оптический датчик или индуктивный.

Созданные им импульсы, генерирующиеся именно в те моменты, когда нужно создать искру в свече, попадают в коммутатор.

Если Вы читали предыдущие статьи, то помните, что основу коммутатора составляет транзистор – электронный прибор, который может управлять большими токами при помощи малых.

Именно на него и воздействуют те самые электрические импульсы от датчика, а он, в свою очередь, контролирует работу катушки зажигания, которая преобразовывает низкое напряжение бортовой сети в гораздо более высокое, необходимое для образования искры (около 30 000 Вольт).

Кстати, датчик импульсов объединён в один корпус с распределителем и вместе они образуют единое устройство, которое называют датчик-распределитель.

Плюшки бесконтактной схемы

Чем же полезна бесконтактная система зажигания, помимо, собственно, отсутствия тех самых злополучных контактов?

Оказывается, её применение помогает поднять мощность силовых агрегатов, снижает количество вредных выбросов в атмосферу и даже понижает расход горючего.

Всё это, как уверяют специалисты, стало возможным благодаря большему, чем у более старых систем, напряжению образования искры, которое достигает 30 000 Вольт.

Эти плюшки, к слову, побуждают некоторых водителей менять старые контактные схемы на бесконтактные. Причём сделать это довольно просто и многие автовладельцы самостоятельно занимаются таким небольшим тюнингом.

Уважаемые читатели, как мы с вами видим, бесконтактная система зажигания принцип действия которой мы сегодня попытались изучить, стала очередным шагом к схемам качественно нового уровня, с более надёжными и долговечными узлами.

Но есть и ещё более интересные инженерные решения, это электронная система зажигания, но о ней мы поговорим в другой раз.

Лада 2106 1.6 White Wolf™ (TAZ) › Бортжурнал › Бесконтактная система зажигания. Установка на автомобили ВАЗ 01-07

Бесконтактная система зажигания является конструктивным продолжением контактно-транзисторной системы зажигания. В данной системе зажигания контактный прерыватель заменен бесконтактным датчиком. Бесконтактная система зажигания стандартно устанавливается на ряде моделей отечественных автомобилей, а также может устанавливаться самостоятельно вместо контактной системы зажигания.

Применение бесконтактной системы зажигания позволяет повысить мощность двигателя, снизить расход топлива и выбросы вредных веществ за счет более высокого напряжения разряда (30000В) и соответственно более качественного сгорания топливно-воздушной смеси.

Бесконтактная система зажигания имеет следующее устройство:
— источник питания;
— выключатель зажигания;
— датчик импульсов;
— транзисторный коммутатор;
— катушка зажигания;
— распределитель;
— центробежный регулятор опережения зажигания;
— вакуумный регулятор опережения зажигания;
— провода высокого напряжения;
— свечи зажигания.

Схема бесконтактной системы зажигания

В целом устройство бесконтактной системы зажигания аналогично контактной системе зажигания, за исключением следующих устройств: датчика импульсов и транзисторного коммутатора.

Датчик импульсов предназначен для создания электрических импульсов низкого напряжения. Различают датчики импульсов следующих типов:
— датчик Холла;
— индуктивный датчик;
— оптический датчик.

Наибольшее применение в бесконтактной системе зажигания нашел датчик импульсов использующий эффект Холла (возникновение поперечного напряжения в пластине проводника с током под действием магнитного поля). Датчик Холла состоит из постоянного магнита, полупроводниковой пластины с микросхемой и стального экрана с прорезями (обтюратора).

Прорезь в стальном экране пропускает магнитное поле и в полупроводниковой пластине возникает напряжение. Стальной экран не пропускает магнитное поле, и напряжение на полупроводниковой пластине не возникает. Чередование прорезей в стальном экране создает импульсы низкого напряжения.

Датчик импульсов конструктивно объединен с распределителем и образуют одно устройство – датчик-распределитель. Датчик-распределитель внешне подобен прерывателю-распределителю и имеет аналогичный привод от коленчатого вала двигателя.

Транзисторный коммутатор служит для прерывания тока в цепи первичной обмотки катушки зажигания в соответствии с сигналами датчика импульсов. Прерывание тока осуществляется за счет отпирания и запирания выходного транзистора.

Принцип работы бесконтактной системы зажигания
При вращении коленчатого вала двигателя датчик-распределитель формирует импульсы напряжения и передает их на транзисторный коммутатор. Коммутатор создает импульсы тока в цепи первичной обмотки катушки зажигания. В момент прерывания тока индуцируется ток высокого напряжения во вторичной обмотке катушки зажигания. Ток высокого напряжения подается на центральный контакт распределителя. В соответствии с порядком работы цилиндров двигателя ток высокого напряжения подается по проводам высокого напряжения на свечи зажигания. Свечи зажигания осуществляют воспламенение топливно-воздушной смеси.

При увеличении оборотов коленчатого вала регулирование угла опережения зажигания осуществляется центробежным регулятором опережения зажигания.

При изменении нагрузки на двигатель регулирование угла опережения зажигания производит вакуумный регулятор опережения зажигания.

Подготовка и установка:
Готовимся к установке – дрель, сверло и пара саморезов ( для катушки в моторном отсеке предусмотрены стандартное место крепежа, а вот коммутатор придется крепить самостоятельно), рожковый ключ на 13, накиданные или торцовые ключи на 8 и 10. Для того, чтобы поставить двигатель на метку «ВМТ» понадобиться ключ на 38.

Можем приступать к замене:
1. Берем ключ на 38 и крутим гайку храповика до совпадения меток на шкиве коленвала и передней крышки двигателя, то есть устанавливаем двигатель на метку «ВМТ»
2. Запоминаем расположение распределителя и бегунка, в такое положение будет ставиться новый распределитель. В моем случае, бегунок повернут к клапанной крышке и «стоит на четвертый цилиндр» по крышке распределителя. Это его правильное положение.
3. Так же, находим на катушке, метку Б+ и запоминаем какие провода к ней прикручиваются. После чего откручиваем и снимаем катушку.
4. Ключом на 13 откручиваем гайку замка распределителя и снимаем его. Стараемся не потерять прокладку.
5. Закрепляем коммутатор, прикручиваем черный провод «на массу». Устанавливаем и закрепляем к кузову катушку. Стандартные провода подключаем на соответственные клеммы ( обращаем внимание на расположение клемм Б и К на новой катушке). Провода с коммутатора – с меткой + на клемму Б, второй провод на клемму К.
6. Устанавливаем распределитель, гайку замка полностью не затягиваем. Подключаем провода от коммутатора к распределителю. Проверяем положение распределителя и бегунка, надеваем крышку и подключаем провода в порядке 1-3-4-2.
7. После, того как все закрепили, можем запускать двигатель и приступать к регулировке зажигания «на слух». Но если у Вас есть стробоскоп, можете им воспользоваться . Для этого, на работающем двигателе, медленно крутим распределитель (гайку замка, мы для этого и не затягивали) «вперед-назад» и ищем среднее положение, в котором обороты двигателя будут самыми высокими и ровными.

Пять фактов о бесконтактном зажигании

Для воспламенения рабочей смеси в цилиндрах бензиновых моторов используются свечи. Высоковольтные импульсы распределяются механическим устройством или контроллером. Зажигание бесконтактного типа обеспечивает устойчивый старт и надежную работу силового агрегата. Преимуществом является стабильность воспламенения топливо-воздушной смеси, что положительно влияет на расход горючего и приемистость автомобиля.

В чем отличие между стандартной системой зажигания и бесконтактной

В классической контактной системе распределитель размыкает высоковольтные цепи, что приводит к ускоренному износу контактной группы и снижению мощности разряда. Бесконтактно-транзисторная система зажигания содержит коммутатор, определяющий положение коленчатого вала при помощи датчика. Ранние образцы сохраняли распределитель, но позднее стали использоваться электронный блок управления и индивидуальные катушки, установленные в свечных колодцах или на блоке цилиндров.

Функции и принципиальная схема бесконтактного зажигания

В состав системы входят компоненты:

  • распределитель с установленным внутри датчиком и бегунком для подачи импульсов к свечам;
  • электронный коммутатор, получающий сигнал от сенсора и управляющий работой катушки;
  • катушка с двойной обмоткой;
  • свечи, вкрученные в головку блока;
  • высоковольтные кабели;
  • жгуты электропроводки для соединения коммутатора с катушкой и датчиком Холла.

Принцип работы

После начала вращения коленчатого вала срабатывает датчик, который посылает сигналы на коммутатор транзисторного типа. Контроллер обрабатывает данные и подает сигналы на контакты обмотки катушки. После остановки подачи сигнала во вторичной обмотке генерируется высоковольтный импульс, подающийся на центральный контакт механического трамблера. Вращающийся бегунок (установлен на валике поверх сенсора) раздает питание на свечи (в соответствии с последовательностью вспышек в цилиндрах двигателя).

В схему входит центробежный регулятор, позволяющий корректировать угол опережения подачи искры при наборе оборотов. Дополнительный вакуумный корректор предназначен для изменения угла в зависимости от нагрузки на силовой агрегат.

Принцип действия БСЗ с механическим трамблером не зависит от способа подачи топливной смеси в цилиндры и места изготовления автомобиля. Система встречается как на карбюраторных моторах, так и на силовых установках с системой впрыска бензина.

Подача сигнала датчиком Холла

Датчик Холла использует в работе эффект формирования поперечного напряжения в пластине из проводника или полупроводника под влиянием магнитного поля. Металлическая пластина с прорезями (количество равняется числу цилиндров) вращается между магнитом и чувствительным элементом датчика синхронно с коленчатым валом двигателя. Сформированные в момент прохождения прорези импульсы тока усиливаются и фиксируются коммутатором.

Преимущества и недостатки бесконтактного зажигания

Основные преимущества бесконтактной системы зажигания:

  • ускорение пуска холодного мотора;
  • стабилизация работы вне зависимости от частоты вращения;
  • снижение расхода топлива и токсичности выхлопа;
  • увеличение срока службы свечей;
  • снижение нагрузки на бортовую сеть автомобиля.
  • дополнительные электронные компоненты снижают надежность системы;
  • увеличенная цена запчастей.

Возможные неисправности бесконтактного зажигания и их диагностика

Распространенные поломки и методы диагностирования и ремонта:

  1. Затрудненный запуск и перебои при работе двигателя как на холостом ходу, так и на повышенных оборотах. Следует проверить напряжение на выходах датчика Холла, которое должно находиться в пределах 0,4-11 В, при отсутствии сигнала сенсор подлежит замене.
  2. Отсутствие искрообразования в одном или нескольких цилиндрах. Для проверки необходимо вывернуть свечи и убедиться в наличии искры между контактами. При нарушении работы следует проверить состояние контактов и удалить следы влаги. Если не работают все свечи, то необходимо осмотреть датчик Холла и коммутатор, а затем поменять поврежденные детали.
  3. Нарушение работы системы возможно из-за повреждения обмоток катушки. Для проверки подсоединяют тестовый прибор к выводам. Следует учесть, что перебои могут начинаться при повышении температуры в моторном отсеке. Если владелец не имеет навыков обслуживания автомобилей, то рекомендуют обратиться в сервис.

Лучшие производители оборудования

В число ведущих изготовителей входят:

  • российский завод СОАТЭ;
  • китайские предприятия UltraSpark, Pertronix или AccuSpark;
  • компании Bosch или Magnetti Marelli (поставляли комплектующие на конвейер, на рынке новых запасных частей компоненты отсутствуют).

Как переоборудовать свою систему под бесконтактную систему зажигания

Существует несколько методик установки БСЗ на автомобили:

  • упрощенный способ, основанный на замене контактной группы оптическим датчиком с силовым электронным ключом для управления катушкой;
  • технология для иномарок, выпущенных до середины 80-х гг. прошлого века, предусматривающая доработку штатного трамблера;
  • усовершенствованный способ, базирующийся на полноценной замене компонентов системы зажигания (подходит для машин, собранных российскими заводами).

Бюджетный метод

Базовым способом улучшения работы системы зажигания является модуль Сонар-ИК, который устанавливается в стандартный распределитель. Установленный внутри изделия оптический датчик реагирует на вращение кулачков.

Импульсы управляют электронным ключом, который прерывает подачу тока на свечи от катушки, обеспечивая формирование искровых разрядов на свечах в соответствии с порядком работы цилиндров.

Датчик прерыватель для иномарок

Для автомобилей иностранного производства старого образца лучше использовать продукцию компаний UltraSpark, Pertronix или AccuSpark. В набор входит датчик положения вала индукционного типа и кольцо с прорезями, а также инструкция по подключению и настройке. Модель подбирают в зависимости от версии распределителя, установленного на машине. Катушка зажигания и доработка корпуса трамблера не требуются.

Полноценная система

Перечисленные выше способы не позволяют получить все преимущества БСЗ. Владельцам машин отечественного производства рекомендуется установить полноценный набор, состоящий из распределителя с интегрированным датчиком Холла, внешнего коммутатора, катушки и комплекта проводов для коммутации. Подобное оборудование выпускает завод СОАТЭ (г. Старый Оскол). Монтаж требует от владельца навыков ремонта автомобилей.

Бесконтактная система зажигания без распределителя

Принцип работы системы без механических элементов основан на обработке данных о положении коленчатого и распределительного валов электронным блоком управления. В конструкции применяются индивидуальные катушки или общий модуль, соединенный со свечами высоковольтными проводами. Система позволяет улучшить процесс воспламенения топлива и автоматически корректирует опережение. Оборудование устанавливается на силовой агрегат в заводских условиях. Самостоятельно доработать двигатель под БСЗ без распределителя невозможно.

Бесконтактно-транзисторная система зажигания

БТСЗ начали применять с 80-х годов. Если в КСЗ прерыватель непосредственно размыкает первичную цепь, в КТСЗ – цепь управления, то в БТСЗ (рис.54-56) прерывателя нет и управление становится бесконтактным. В этих системах транзисторный коммутатор, прерывающий цепь первичной обмотки катушки зажигания, срабатывает под воздействием электрического импульса, создаваемого бесконтактным датчиком.

БТСЗ– это системы зажигания повышенной энергии (до 50 мДж) и высокого напряжения пробоя (не менее 30 кВ). В БТСЗ вместо прерывателя-распределителя применяется датчик-распределитель.

Все виды датчиков, используемых в БТСЗ, делят на параметрические и генераторные.

Рис. 54. Принципиальная схема бес­контактно- транзисторной системы зажигания (БТСЗ) с индукционным датчиком:

1 — свечи зажигания; 2 — датчик-распределитель, 3 — коммутатор, 4 — катушка зажигания

В параметрических датчиках изменяются те или иные параметры управляющей (базовой) цепи (сопротивление, индуктивность или емкость), в связи с чем изменяется сила тока базы транзистора.

Генераторные датчики (магнитоэлектрические, фотоэлектрические и др.) являются источниками питания управляющей цепи. Наибольшее распространение получили магнитоэлектрические датчики – индукционные (ГАЗ, УАЗ) и датчики Холла (ВАЗ). Магнитоэлектрический индукционный датчик представляет собой однофазный генератор переменного тока с ротором на постоянных магнитах (см. Рис. 54). Число пар полюсов ротора соответствует числу цилиндров двигателя. Число периодов изменения напряжения за два оборота, например, четырехтактного двигателя, соответствует числу его цилиндров. Положительные полупериоды этого напряжения открывают транзистор формирующего первичный ток каскада коммутатора бесконтактной системы зажигания, что соответствует моменту искрообразования.

При малых частотах вращения коленчатого вала создаваемого напряжения недостаточно для переключения транзистора. Для устранения этого недостатка вводят специальный формирующий каскад. В результате средний потребляемый ток в схеме с индукционным датчиком довольно большой (6-8 А). Поэтому, на малой частоте вращения холостого хода не избежать разрядки аккумулятора.

Читать еще:  Антигравийная пленка в Москве

Рис.55. Бесконтактно- транзисторная система зажигания 1 — свечи зажигания; 2 — датчик-распределитель; 3 — коммутатор; 4 — генератор; 5 — аккумуляторная батарея; 6 — монтажный блок; 7 — реле зажигания; 8 — катушка зажигания: 9 — датчик ХоллаРис. 56. Бесконтактно-транзисторная система зажигания (фрагмент): 1 -свечи зажигания. 2 — датчик Холла. 3 — коммутатор, 4 — датчик-распределитель. 5 — катушка зажигания

Например, при КСЗ, если выйдет из строя генератор, на аккумуляторной батарее можно проехать сотни километров, при рассматриваемой БТСЗ с индукционным датчиком – не более десятка.

В случае работы системы с датчиком Холла время накопления энергии в катушке зажигания остается постоянным независимо oт частоты вращения коленчатого вала, т.е. энергия искры практически не зависит от оборотов двигателя и напряжения бортовой сети.

Устройство коммутатора для таких бесконтактных систем достаточно сложное (в нем есть микросхема, силовой транзистор, а также несколько резисторов, стабилитроны и конденсаторы). Энергия искры в три-четыре раза больше, чем в КСЗ. Система небезопасна и требует осторожности. Если, например, отсоединить провод от свечи – может «сгореть» коммутатор или распределитель.

Магнитоэлектрический датчик Холла получил свое название по имени Э.Холла, американского физика, открывшего в 1879 г. важное гальва-номагнитное явление

Если на полупроводник, по которому (вдоль) протекает ток, воздействовать магнитным полем, то в нем возникает поперечная разность потенциалов (ЭДС Холла). Возникающая поперечная ЭДС может иметь напряжение только на 3В меньше, чем напряжение питания.

Бесконтактные клавишные переключатели на основе эффекта Холла применялись за рубежом довольно широко уже с начала 70-х годов. Достоинства этого переключателя – высокая надежность и долговечность, малые габариты, а недостатки – постоянное потребление энергии и сравнительно высокая стоимость.

Рассмотрим полупроводниковую пластинку размером 5×5 мм (рис. 57 а).

Рис.57. Принцип действия импульсного генератора Холла:

а — нет магнитного поля, по полупроводнику протекает ток питания – АВ; б — под действием магнитного поля — Н появляется ЭДС Холла — EF; в — датчик Холла

Если по пластинке между двумя параллельными сторонами пропустить ток и одновременно поднести к ней постоянный магнит, а к двум другим сторонам квадрата подсоединить провода, то получим генератор Холла (рис. 55.б). Если между магнитом и полупроводником поместить перемещающийся экран с прорезями, получим импульсный генератор Холла.

Датчик Холла имеет щелевую конструкцию. С одной стороны щели расположен полупроводник, по которому при включенном зажигании протекает ток, а с другой стороны – постоянный магнит. В щель датчика входит стальной цилиндрический экран с прорезями. При вращении экрана, когда его прорези оказываются в щели датчика, магнитный поток воздействует на полупроводник с протекающим по нему током и управляющие импульсы датчика Холла подаются в коммутатор, в котором они преобразуются в импульсы тока в первичной обмотке катушки зажигания.

Если сравнить транзисторные системы зажигания (КТСЗ и БТСЗ), то их «внешнее отличие» только в том, что у первой кулачок с четырьмя выступами и контакты прерывателя, а у второй – экран с четырьмя прорезями и датчик Холла.

Основные достоинства БТСЗ относительно контактных систем оче­видны.

Во-первых, отсутствие контактов прерывателя.

Во-вторых, так как нет размыкания контактов кулачком и нет биения и вибрации ротора распределителя – не нарушается равномерность распределения искры по цилиндрам.

В-третьих, повышенная энергия разряда в свече при БТСЗ надежно обеспечивает воспламенение горючей смеси в цилиндрах двигателя. Это особенно важно при разгоне, когда условия для воспламенения смеси неблагоприятны из-за ее временного обеднения, не компенсируемого ускорительным насосом. Примерно на 20% снижается содержание СО в отработавших газах и на 5% расход топлива.

В-четвертых, обеспечивается уверенный пуск холодного двигателя при низких температурах при падении напряжения до 6 В. На схеме БТСЗ (см. рис. 55) показано реле зажигания 7 и дан фрагмент монтажного блока 6, который появился на автомобиле в связи со значительным усложнением схемы электрооборудования. Общей тенденцией развития схем электрооборудования является широкое применение электронных устройств. Электронные блоки (процессоры, контроллеры, микро-ЭВМ), обработав по заложенным в них программам (алгоритмам) сведения, поступающие от различных датчиков, выдают команды на обмотки реле релейного блока. Релейный блок подает уже ток силового питания различным устройствам.

Виды, устройство и принцип работы системы зажигания

Система зажигания двигателя – это комплекс устройств, приборов и датчиков, необходимых для его запуска. Ее главной задачей является создание высокого напряжения для формирование искры, воспламеняющей топливовоздушную смесь, в точно определенный момент времени. Это обеспечивает правильный режим работы мотора, а потому от исправности системы зажигания зависит расход топлива, мощность и безопасность движения автомобиля.

  1. Устройство и принцип действия типовой системы зажигания
  2. Виды систем зажигания
  3. Характерные особенности контактной системы
  4. В чем отличия контактно-транзисторной системы зажигания
  5. Принцип работы бесконтактной системы
  6. Электронная и микропроцессорная системы

Устройство и принцип действия типовой системы зажигания

С технической стороны система зажигания входит в комплекс электрооборудования двигателя. Конструктивно она состоит из следующих элементов:

  • Аккумулятор или другой источник питания. Он подает в сеть низкое напряжение 12 вольт.
  • Переключатель. При повороте ключа переключатель замыкается и низкое напряжение поступает в накопитель энергии.
  • Накопитель энергии. Бывает двух видов: индуктивный (катушка зажигания трансформаторного типа, преобразующая низкое напряжение в высокое до 30 тысяч вольт) и емкостной (конденсатор).
  • Блок управления аккумулированием и распределением энергии. В зависимости от типа системы зажигания это может быть прерыватель, транзисторный коммутатор или ЭБУ (электронный блок управления).
  • Распределитель. Этот узел может быть механическим или электронным. Он осуществляет снабжение определенных свечей энергией в заданный момент времени.
  • Провода цепи высокого напряжения. По ним поступает высокое напряжение к электродам свечей.
  • Свечи зажигания.

Работа системы зажигания основана на следующем принципе: при подаче в сеть низковольтного напряжения, происходит накопление и преобразование энергии, что затем распределяется по свечам, на электродах которых формируется искра, провоцирующая воспламенение топливовоздушной смеси.

Виды систем зажигания

В современном автомобилестроении системы зажигания классифицируют в зависимости от способа управления процессом. При этом выделяют три основных типа схем:

  • контактная (контактно-транзисторная);
  • бесконтактная (транзисторная);
  • электронная (микропроцессорная).

Характерные особенности контактной системы

Исторически контактная система является одной из первых и сегодня ее можно встретить лишь на старых моделях автомобилей. В таких конструкциях формирование высокого напряжения происходит в трансформаторной катушке, а распределение его на свечи реализуется механическим способом – замыканием и размыканием контактов цепи прерывателем-распределителем.

Устройство контактной системы зажигания

Помимо основных элементов, такие системы включают в себя центробежный регулятор опережения зажигания, необходимый для преобразования угла опережения зажигания относительно частоты вращения коленвала. Он представляет собой два груза, воздействующих на мобильную пластину, контактирующую с кулачковым механизмом прерывателя.

Угол опережения зажигания – определенное положение коленвала, при котором осуществляется подача высокого напряжения на свечи. В таком режиме зажигание происходит до момента достижения поршнем верхней мертвой точки, что позволяет обеспечить максимально эффективное сгорание топливовоздушной смеси.

Также в контактных схемах применяется вакуумный регулятор опережения зажигания, изменяющий угол опережения соответственно режиму работы (нагрузке) мотора. Он соединен с полостью, находящейся за дроссельной заслонкой, и при нажатии на педаль газа изменяет угол опережения в зависимости от величины разрежения.

При замыкании контактов низкое напряжение подается на первичную обмотку катушки, где аккумулируется энергия и в момент размыкания контакта происходит формирование высокого напряжения на вторичной обмотке. Затем энергия поступает к распределителю зажигания и далее на соответствующую свечу.

Если нагрузка на силовой агрегат повышается, увеличивается частота вращения вала прерывателя-распределителя, и грузы центробежного регулятора расходятся, изменяя положение пластины. Это способствует более раннему размыканию контактов, что увеличивает угол опережения. При снижении нагрузки на двигатель происходит обратный процесс.

В чем отличия контактно-транзисторной системы зажигания

Следующим поколением системы зажигания стала контактно-транзисторная, предполагающая установку в первичной цепи катушки транзисторного коммутатора. Он позволяет снизить силу тока в обмотке низкого напряжения, что повышает срок эксплуатации контактов.

Контактно-транзисторная система зажигания

За счет установки транзистора напряжение, поступающее на свечи, больше, чем в классической контактной системе на 30%. Зазор между электродами и, как следствие, длина искры при этом также больше, а значит возрастает и площадь контакта с топливовоздушной смесью, что способствует ее полному сгоранию. В контактно-транзисторной системе зажигания прерыватель воздействует не на катушку, а на коммутатор.

При повороте ключа через транзистор начинают проходить два типа токов:

  • управления;
  • основной ток первичной обмотки.

Когда контакты размыкаются, ток цепи управления исчезает, а транзистор запирается, препятствуя протеканию тока первичной обмотки. В этот момент магнитное поле формирует высокое напряжение на вторичной обмотке. Для ускорения запирания транзистора в контактной системе зажигания этого типа может устанавливаться импульсный трансформатор.

Принцип работы бесконтактной системы

Эволюционным продолжением транзисторно-контактной системы, является бесконтактное зажигание. В таких конструкциях вместо прерывателя устанавливается специальный датчик импульсов. Это дает возможность увеличить срок службы системы зажигания за счет отсутствия неисправностей, связанных с контактами прерывателя.

Датчик формирует электрические импульсы низкого напряжения. Он бывает трех типов:

  • Датчик Холла. Конструкция такого датчика включает в себя постоянный магнит, и пластину-полупроводник, оснащенную микросхемой.
  • Индуктивный. Принцип его работы основан на изменении величины индукции чувствительного элемента в зависимости от величины зазора между датчиком и движущимся пластинчатым ротором, воздействующим на магнитное поле.
  • Оптический. Он состоит из светодиода, фототранзистора и микросхемы согласования. При попадании света от диода на фототранзистор датчик подает массу (минус питания) на коммутатор. Перекрытие потока света провоцирует исчезновение тока в катушке и способствует дальнейшему формированию искры.

Конструктивно датчик импульсов интегрирован в распределитель и регулируется режимом вращения коленвала двигателя. Прерывание тока в первичной обмотке катушки зажигания бесконтактной системы осуществляется также транзисторным коммутатором, но реагирующим на сигналы датчика.

В момент вращения коленвала датчик посылает импульсы напряжения на коммутатор. Последний, соответственно, формирует импульсы тока в обмотке низкого напряжения катушки. Когда ток не поступает, на вторичной обмотке возникает высокое напряжение, которое передается распределителю и далее по высоковольтным проводам к нужной свече. Изменение угла опережения в бесконтактной системе зажигания также выполняется центробежным и вакуумным регуляторами.

Электронная и микропроцессорная системы

Самой современной системой считается электронная. Она не имеет механических контактов, а потому ее также можно назвать бесконтактной. Электронное зажигание является частью системы управления двигателем.

Электронная система зажигания

Выделяют два типа электронных бесконтактных систем зажигания:

  • С распределителем. В подобной схеме применяется механический распределитель зажигания, подающий высокое напряжение на заданную свечу.
  • Прямого зажигания. При такой схеме высокое напряжение поступает к электродам свечи напрямую с катушки.

Помимо базовых элементов электронная система зажигания включает:

  • Входные датчики. Они регистрируют данные о текущем режиме работы мотора и подают их в виде электронных сигналов блоку управления.
  • Электронный блок управления. Он выполняет обработку сигналов и передает соответствующие команды на воспламенитель.
  • Исполнительное устройство, или воспламенитель. Фактически является транзисторной платой, обеспечивающей в открытом режиме поступление напряжения на первичную обмотку, а в закрытом – отсечку и формирование высокого напряжения на вторичной обмотке катушки.

Такие системы могут оснащаться одной общей (в конструкциях с распределителем), индивидуальными (при подаче энергии прямо на свечу) или сдвоенными катушками зажигания.

Разновидностью электронной системы является микропроцессорная. В ней применяется целый комплекс датчиков, сигналы которых обрабатываются ЭБУ. Он рассчитывает оптимальный режим работы системы в заданный момент времени. Преимуществами такой конструкции является снижение расхода топлива и улучшение динамических характеристик автомобиля.

Принцип действия бесконтактной системы зажигания

Рассмотрим принцип действия бесконтактной системы зажигания на примере системы зажигания автомобилей ВАЗ 2108, 2109, 21099. Определим, откуда берется искра для поджига топливной смеси в камере сгорания и почему она проскакивает своевременно для каждого цилиндра.

Бесконтактная система зажигания автомобилей ВАЗ 2108, 2109, 21099 включает в себя катушку зажигания, свечи зажигания, высоковольтные провода (бронепровода), трамблер с распределителем зажигания, датчиками-регуляторами опережения зажигания (центробежным и вакуумным) и датчиком Холла, также коммутатор и провода низкого напряжения.

Схема бесконтактной системы зажигания автомобилей ВАЗ 2108, 2109, 21099

Откуда поступает ток в систему зажигания?

Электрический ток в систему зажигания поступает с вывода «30» генератора, через монтажный блок предохранителей и реле, замок зажигания, реле зажигания и далее на вывод «Б» катушки зажигания. Система запитывается после поворота ключа в замке зажигания.

Принцип действия бесконтактной системы зажигания

— При работе двигателя вращается вал распределителя зажигания (трамблера). В работу вступает датчик Холла. Стальной круглый экран с четырьмя прорезями на валу трамблера, вращаясь, проходит через зазор этого датчика. Когда проходит прорезь экрана, напряжение отдаваемое датчиком ниже бортового на 3 В или равно ему, когда зубец экрана, напряжение падает практически до нуля. Прохождение каждого из четырех зубцов соответствует такту сжатия и моменту зажигания в одном из цилиндров двигателя.

Датчик Холла и экран трамблера

— Далее в работу вступает коммутатор. Свои прерывистые импульсы датчик Холла подает на вывод «6» коммутатора, а тот в свою очередь подает импульс на первичную обмотку катушки зажигания (вывод «К»).

— Теперь работает катушка зажигания. В момент прерывания электрического тока (зубец экрана проходит через зазор датчика Холла) магнитное поле в катушке зажигания резко сжимается и, пересекая витки обмотки, производит ЭДС порядка 22-25 кВ (ток высокого напряжения).

— Работа распределителя зажигания. Ток высокого напряжения по центральному бронепроводу поступает на центральный вывод крышки трамблера и далее на «бегунок»-распределитель зажигания, который вращаясь, раздает ток высокого напряжения по четырем клеммам крышки.

— Работа свечей зажигания. По высоковольтным проводам ток высокого напряжения поступает к свечам зажигания. Между их электродами проскакивает искра, воспламеняющая топливную смесь в цилиндрах двигателя.

Чтобы добиться от двигателя максимальной мощности необходимо воспламенять смесь искрой несколько раньше прихода поршня в верхнюю мертвую точку (ВМТ). Для этого регулируют угол опережения зажигания вращением трамблера в ту или иную сторону. При холостых оборотах двигателя 750-800 об/мин угол опережения зажигания, например для двигателя 21083 работающего на 92-м бензине должен составлять 4±1º (подробнее см. «Установка угла опережения зажигания на ВАЗ 2108, 2109, 21099»).

Примечания и дополнения

— При работе двигателя на высоких оборотах необходим еще более ранний угол опережения зажигания. Здесь помогает центробежный регулятор опережения зажигания, который за счет расхождения своих грузиков от центробежной силы при повышении оборотов вращения оси трамблера смещает пластину с экраном. Она раньше проходит через зазор в датчике Холла, импульс поступает на коммутатор с некоторым опережением и соответственно зажигание становится раньше (подробнее см. «Центробежный регулятор опережения зажигания»).

Работа центробежного регулятора опережения зажигания автомобилей ВАЗ 2108, 2109, 21099

— При движении с нагрузкой (например, в гору) помогает вакуумный регулятор опережения зажигания. Он работает по такому же принципу, как и центробежный регулятор. Смещает пластину с экраном для опережения угла, но за счет разрежения возникающего за дроссельной заслонкой после нажатия на педаль «газа» (подробнее см. «Вакуумный регулятор опережения зажигания»).

Вакуумный регулятор опережения зажигания автомобилей ВАЗ 2108, 2109, 21099

Что такое бесконтактная система зажигания

Дата публикации: 18 декабря 2018 .
Категория: Автотехника.

Для того чтобы бензиновый двигатель заработал, в его цилиндрах должно произойти воспламенение топлива. Это истина. Поэтому система зажигания (сначала, естественно, контактная) и возникла одновременно с автомобилем. Но прогресс не стоит на месте. Он, конечно же, коснулся и системы зажигания: на смену традиционному способу образования искры пришел более эффективный и надежный, а именно, бесконтактный. О нем и пойдет речь в данной статье.

Основные различия традиционной и бесконтактной систем зажигания

При работе бензинового двигателя искрообразование (то есть подача высокого напряжения на свечу) происходит в момент, когда осуществляется размыкания низковольтной цепи питания катушки зажигания. В традиционной системе в качестве такого «выключателя» выступают контакты механического прерывателя, которые периодически размыкаются при соприкосновении с кулачками вращающегося ротора трамблера.

Читать еще:  Водородный седан Toyota Mirai заметно повзрослел

Именно этот узел и был заменен при переходе на бесконтактную систему. Управляющий сигнал в ней формируется специальным сенсором (индуктивным, оптическим или датчиком Холла), установленным под крышкой распределителя. Электрический импульс поступает на полупроводниковый коммутатор, который и осуществляет управление первичной обмоткой катушки зажигания.

На заметку! В полной мере назвать систему зажигания большинства современных автомобилей (средней ценовой категории) бесконтактной все-таки нельзя. Дело в том, что контакты, установленные в крышке распределителя, все равно участвуют в процессе искрообразования, ведь, именно, через них и бегунок высокое напряжение подается на свечи.

Преимущества и недостатки бесконтактной системы зажигания

Несмотря на то, что бесконтактная система зажигания (БСЗ) стоит дороже (это, пожалуй, ее единственный недостаток) по сравнению с традиционной, именно ее применяют сейчас во всех современных автомобилях. Лучшее искрообразование в БСЗ обусловлено тем, что за счет применения полупроводникового коммутатора уменьшаются потери энергии на первичной обмотке катушки, а это, в свою очередь, ведет к увеличению напряжения на вторичной. В результате происходит более полное сгорание топливно-воздушной смеси в цилиндрах двигателя. Отсюда и все вытекающие достоинства бесконтактной системы зажигания:

  • увеличение мощности мотора;
  • экономия топлива;
  • улучшение динамических характеристик автомобиля;
  • снижение токсичности выхлопных газов;
  • уверенный запуск двигателя в условиях повышенной влажности и больших отрицательных температур;
  • стабильная работа мотора при различных оборотах (вплоть до максимальных);
  • увеличение срока эксплуатации свечей.

Способы переоборудования контактной системы зажигания в бесконтактную

Естественно, по дорогам нашей необъятной Родины колесит огромное количество автомобилей (как импортных, так и отечественных), оборудованных стандартной системой зажигания. Повысить эффективность и надежность ее работы – мечта любого владельца транспортного средства. В настоящее время сделать это своими руками достаточно просто. Существует два основных способа (вариант полностью самодельного устройства мы не рассматриваем) модернизации системы зажигания:

  • Приобретение и установка полного комплекта бесконтактного зажигания. Хотя такой вариант тюнинга и является достаточно дорогостоящим, специалисты считают его самым «правильным» с технической точки зрения. Только полностью заменив штатную систему зажигания можно получить новую, обладающую всеми достоинствами бесконтактного искрообразования.
  • Доработка «родного» трамблера, путем установки специального модуля, представляющего собой малогабаритное устройство «3 в 1» (датчик, усилитель сигнала и коммутирующий транзистор). Этот вариант модернизации является менее затратным и позволяет несколько улучшить технические характеристики традиционной системы зажигания, исключив из схемы «проблемный» механический прерыватель.

На заметку! Производители автомобильных запчастей предлагают пользователям наборы, позволяющие произвести переделку систем зажигания для различных моделей транспортных средств, в соответствии с вышеописанными вариантами.

Бюджетный вариант перехода на бесконтактную систему

Контакты механического размыкателя «подгорают» и изнашиваются, поэтому их приходится периодически чистить и регулировать зазор. Избавить владельцев классических ВАЗов (2101-2107) от этой рутинной работы позволяет установка модуля «Сонар ИК» (стоимостью 700÷900 рублей) в трамблер.

Устройство состоит из:

  • оптического датчика (источника инфракрасного излучения и фотоприемника);
  • усилителя электрического сигнала;
  • коммутирующего транзистора.

Важно! Все вышеперечисленное смонтировано в миниатюрном влагозащищенном корпусе, что позволяет достаточно просто установить его на место штатного контактного прерывателя.

Принцип работы модуля заключается в следующем:

  • При вращении ротора трамблера его кулачки периодически перекрывают световой поток оптического датчика.
  • Электрические импульсы от фотоприемника усиливаются встроенной микросхемой и подаются на управляющий транзистор, который размыкает/замыкает цепь первичной обмотки катушки.

На заметку! Светодиодные индикаторы (красного и зеленого цвета) информируют о состоянии электронного коммутирующего ключа (замкнут/разомкнут).

Как установить и настроить «Сонар ИК» подробно рассказано в представленном ниже видео:

Бесконтактный датчик-прерыватель для иномарок

Владельцы иномарок могут приобрести простое приспособление от UltraSpark, Pertronix или AccuSpark, позволяющее быстро «превратить» стандартную систему зажигания в бесконтактную. В комплект поставки такого устройства входят:

  • Индукционный датчик-прерыватель.
  • Триггерное пластиковое кольцо с запрессованными в него неодимовыми магнитами (по количеству цилиндров двигателя).
  • Инструкция по монтажу и схема подключения.

По утверждению производителей монтаж бесконтактного датчика-прерывателя (БДП) занимает не более 30 минут:

  • Снимаем крышку трамблера и бегунок.
  • Демонтируем контактную группу механического прерывателя и искрогасящий конденсатор.
  • Устанавливаем БДП и выводим его провода через отверстие в корпусе.
  • Надеваем на ось ротора триггерное кольцо.

  • Возвращаем на место бегунок и крышку трамблера.
  • Подсоединяем провода от установленного датчика к катушке зажигания в соответствии со схемой.

Важно! Зная модель трамблера можно подобрать бесконтактный модуль-прерыватель, практически, для любой марки транспортного средства иностранного производства.

Несомненными достоинствами БДП являются:

  • Невысокая стоимость.
  • Простота установки.
  • Возможность использования со стоковыми трамблерами и высоковольтными катушками конкретной марки автомобиля.

Полноценная система бесконтактного зажигания

Естественно, получить все преимущества БСЗ, установив только датчик-прерыватель, не получится. Этот модуль лишь позволяет повысить надежность искрообразования (без пропусков) и избавляет владельцев от необходимости постоянно контролировать состояние механической контактной группы. Для того, чтобы оборудовать свой автомобиль полноценной БСЗ, необходимо приобрести комплект, состоящий из:

  • трамблера, с установленным датчиком Холла;
  • полупроводникового коммутатора;
  • высоковольтной катушки;
  • соединительных проводов с установленными колодками.

Такой набор для классических автомобилей ВАЗ от «СОАТЭ» (Россия, город Старый Оскол) на сегодняшний день стоит около 2500 рублей. В представленном ниже видео подробно описан процесс его самостоятельной установки:

Система зажигания без распределителя

Самой «продвинутой» и действительно бесконтактной является электронная система зажигания, которая не имеет механического распределителя, так как его функции выполняет бортовой компьютер. Он «определяет» момент искрообразования в соответствующем цилиндре по сигналам, поступающим с сенсоров положения распределительного и коленчатого валов. Вместо одной высоковольтной катушки в системе используют несколько (по одной на каждый цилиндр двигателя). Это позволяет создать более мощную искру, так как компьютер в зависимости от частоты вращения двигателя четко «определяет» время, необходимое для накопления энергии.

На заметку! Еще более инновационной считают систему зажигания, в которой катушки вмонтированы непосредственно в колпачки, одеваемые на свечи. Это позволяет избавиться от высоковольтных проводов, что в свою очередь снижает потери электроэнергии, а также повышает надежность и эффективность процесса искрообразования.

whatisvehicle

Как это работает?

Бесконтактная система зажигания

Бесконтактная система зажигания

TSZi, TSZh

Принцип действия бесконтактной системы зажигания заключается в следующем: При включенном зажигании и вращающемся коленвале двигателя датчик-распределитель выдает импульсы напряжения на коммутатор, который преобразует их в прерывистые импульсы тока в первичной обмотке катушки зажигания. В момент прерывания тока в первичной обмотке индуктируется ток высокого напряжения во вторичной обмотке. Ток высокого напряжения идет от катушки зажигания по проводу через угольный контакт на пластину ротора, и затем через клемму крышки распределителя по проводу высокого напряжения, в наконечнике которого установлен помехоподавительный экран, попадает на соответствующую свечу зажигания и воспламеняет рабочую смесь в цилиндре.

Наибольшее распространение получили магнитоэлектрические датчики — индукционные(системы с ними маркируются TSZi) и датчики Холла(системы с ними маркируются TSZh).

Система небезопасна и требует осторожности. Если, например, отсоединить провод от свечи — может «сгореть» коммутатор или распределитель.

Прежде, давайте разберём эти два датчика, что же они представляют из себя?

Индуктивный датчик

Работа индуктивного датчика положения основана на изменении индукции чувствительного элемента при изменении зазора между ним и ферромагнитным движущимся объектом.

Ферромагнитный объект — объект, обладающий ферромагнитными свойствами(т.е. оно активно притягивает к себе магнит и активно притягивается магнитом).

В индуктивном датчике имеются катушка из обмотки провода и магнит. В качестве сопряженной детали используется ротор, состоящий из пластин определенного размера.

1 – индуктивный датчик; 2 – пластины ротора

Каждый раз, когда пластина ротора проходит около датчика импульсов, изменяется магнитное поле, в результате чего в обмотке катушки индуцируется импульсное напряжение.

Индуктивный датчик вырабатывает сигнал, близкий к синусоидальному, поэтому его приходится преобразовывать в форму, более удобную для управления током в первичной обмотке (то есть сигнал датчика искусственно преобразуется в форму, близкую к прямоугольной, увеличивается крутизна фронта и спада, обрезается верхушка импульса и т.п.).

Датчик Холла

Магнитоэлектрический датчик Холла получил свое название по имени Э.Холла, американского физика, открывшего в 1879 г. важное гальваномагнитное явление.

Суть данного явления заключалась в следующем: Если на полупроводник, по которому (вдоль) протекает ток, воздействовать магнитным полем, то в нем возникает поперечная разность потенциалов (ЭДС Холла). Возникающая поперечная ЭДС может иметь напряжение только на 3 В меньше, чем напряжение питания.

а — нет магнитного поля, по полупроводнику протекает ток питания — АВ; б — под действием магнитного поля — Н появляется ЭДС Холла — ЕF; в — датчик Холла

Датчик Холла имеет щелевую конструкцию. С одной стороны щели расположен полупроводник, по которому при включенном зажигании протекает ток, а с другой стороны — постоянный магнит. В щель датчика входит стальной цилиндрический экран с прорезями. При вращении экрана, когда его прорези оказываются в щели датчика, магнитный поток воздействует на полупроводник с протекающим по нему током и управляющие импульсы датчика Холла подаются в коммутатор, в котором они преобразуются в импульсы тока в первичной обмотке катушки зажигания.

Датчик состоит из постоянного магнита(2), пластины полупроводника(3) и микросхемы. Между пластинкой(3) и магнитом(2) имеется зазор(4). В зазоре датчика находится стальной экран(1) с прорезями. Когда через зазор проходит прорезь экрана, то на пластинку полупроводника действует магнитное поле и с нее снимается разность потенциалов. Если же в зазоре находится тело экрана, то магнитные силовые линии замыкаются через экран и на пластинку не действуют. В этом случае разность потенциалов на пластинке не возникает.

Бесконтактные системы зажигания с индуктивным датчиком(TSZi).

1 — свечи зажигания; 2 — датчик-распределитель, 3 — коммутатор, 4 — катушка зажигания

Данные системы являются бесконтактными системами зажигания с нерегулируемым временем накопления энергии. Бесконтактная система зажигания с нерегулируемым временем накопления энергии принципиально отличается от контактно-транзисторной только тем, что в ней контактный прерыватель заменен бесконтактным датчиком. На рисунке ниже приведена электрическая схема системы:

Принцип работы: Сигнал с обмотки L магнитоэлектрического датчика через диод VD2, пропускающий только положительную полуволну напряжения, и резисторы R2, R3 поступает на базу транзистора VT1. Транзистор открывается, шунтирует переход база-эмиттер транзистора /Т2, который закрывается. Закрывается и транзистор VT3, ток в первичной обмотке катушки зажигания прерывается, и на выходе вторичной обмотки возникает высокое напряжение. В отрицательную полуволну напряжения транзистор VT1 закрыт, открыты VT2 и VT3, и ток начинает протекать через первичную обмотку Катушки возбуждения. Очевидно, что число пар полюсов датчика должно соответствовать числу цилиндров двигателя.

Цепь R3-C1 осуществляет фазосдвигающие функций, компенсирующие фазовое запаздывание протекания тока в базе транзистора VT1 из-за значительной индуктивности обмотки датчика L, чем снижается погрешность момента искрообразования.

Стабилитрон VD3 и резистор R4 защищают схему коммутатора от повышенного напряжения в аварийных режимах, так как, если напряжение в бортовой цепи превышает 18 В, цепочка начинает пропускать ток, транзистор VT1 открывается и закрывается выходной транзистор VT3. Цепями защиты от опасных импульсов напряжения служат конденсаторы СЗ, С4, С5, С6; диод VD4 защищает схему от изменения полярности бортовой сети. Форма и величина выходного напряжения магнитоэлектрического датчика изменяются с частотой вращения, что влияет на момент искрообразования.

Бесконтактные системы зажигания с датчиком Холла(TSZh)

1 — свечи зажигания; 2 — датчик-распредепитель; 3 — коммутатор; 4 — генератор; 5 — аккумуляторная батарея; 6 — монтажный блок; 7 — репе зажигания; 8 — катушка зажигания; 9 — датчик Холла

Данные системы являются системами зажигания с регулированием времени накопления энергии. Данная система зажигания пришла на смену TSZi, чтобы исправить 2 недостатка:

  1. Форма и величина выходного напряжения магнитоэлектрического датчика изменяются с частотой вращения, что влияет на момент искрообразования.
  2. Уменьшение вторичного напряжения при росте частоты вращения коленчатого вала. Поэтому более перспективна система с регулированием времени накопления энергии.

В микросхеме коммутатора сигнал в блоке формирования периода, накопления энергии сначала инвертируется, затем интегрируется. На выходе интегратора образуется пикообразное напряжение, величина которого тем больше, чем меньше частота вращения двигателя. Это напряжение поступает на вход компаратора, на другой вход которого подано опорное напряжение. Компаратор преобразует величину напряжения во время. Сигнал на входе компаратора имеет место тогда, когда величина пилообразного напряжения достигает опорного и превышает его. При большой частоте вращения величина пилообразного напряжения мала, соответственно мала и длительность сигнала на выходе компаратора. С исчезновением выходного сигнала компаратора через схему управления открывается транзистор VT1, и первичная .цепь зажигания включается в сеть. Следовательно, время накопления энергии в катушке соответствует времени отсутствия сигнала на выходе компаратора. Уменьшение длительности выходного сигнала компаратора позволяет увеличить относительную величину времени накопления энергии и тем самым стабилизировать ее абсолютное значение.

Блок ограничения силы выходного тока срабатывает по сигналу, снимаемому с резисторов, включенных последовательно в первичную цепь зажигания. Если этот сигнал достигает уровня соответствующего силе тока 8 А, блок переводит выходной транзистор в активное состояние с фиксированием этой величины тока.

Блок безискровой отсечки отключает катушку зажигания в случае, если включено электропитание, но вал двигателя неподвижен. При этом, если при остановленном двигателе выходное напряжение датчика соответствует низкому уровню, катушка отключается сразу, в противном случае отключение происходит через 2 — 5 с.

Схема насыщена элементами защиты от всплесков напряжения и включения обратной полярности питания. Регулировка угла опережения зажигания осуществляется традиционными способами, т.е. центробежным и вакуумным регуляторами.

Общий принцип работы:

Давайте обобщим всё прочитанное. Не смотря на разность датчиков, системы схожи в построении и различаются внутренним устройством некоторых компонентов. Давайте взглянем на систему и опишем последовательно работу:

Итак, водитель поворачивает ключ в замке зажигания, тем самым замыкая цепь. Ток начинает поступать из аккумулятора по замкнутому замку зажигания.

Можно сказать, что питаниец цепи происходит по схеме Аккумулятор->Стартер->Генератор. При нахождении ключа в положении «стартер» замыкаются контакты 50 и 30. Электрический ток поступает на реле стартера. Там появляется магнитное поле, что приводит к тому, что бендикс стартера вводится в зацепление с шестернёй маховика. Включается электродвигатель стартера и он начинает крутит маховик. Тот в свою очередь начинает раскручиваться и при достижении скорости, большей чем допустимая скорость вращения вала шестерни стартера привод стартера выводит её из зацепления. В свою очередь, вращение коленчатого вала передаётся на вращение вала генератора, что в свою очередь приводит к выработке электрического тока на нём, который питает бортовую сеть автомобиля и подзаряжает аккумулятор.

1 — свечи зажигания; 2 — датчик-распределитель; 3 — распределитель; 4 — датчик импульсов; 5 — коммутатор; 6 — катушка зажигания; 7 — монтажный блок; 8 — реле зажигания; 9 — выключатель зажигания; А — к клемме генератора.

Электрический ток поступает на первичную обмотку катушки зажигания(6). Коммутатор, получая сигнал с датчика(4), прерывает или наоборот включает первичную обмотку. Когда протекание тока по первичной обмотке прерывается, то во вторичной обмотке вознекате ток высокого напряжение, который подаётся по высоковольтному проводу на распределитель. Распределитель, вал которого приводится в движение от шестерни привода масляного насоса или коленчатого вала(зависит от конкретного устройства двигателя) распределяет искру по свечам, тем самым воспламеняя смесь в нужном цилиндре двигателя в нужное время.

Устройство бесконтактной системы зажигания

Бесконтактная система зажигания появилась благодаря развитию контактно-транзисторной системы. Отличие бесконтактной системы зажигания состоит замене контактного прерывателя на бесконтактный датчик.

Преимущества бесконтактной системы зажигания

Использование бесконтактной системы зажигания на автомобиле позволило повысить мощность, добиться более качественного сгорания горючей смеси, что не только позволило снизить расход, но и уменьшить выброс вредных веществ в атмосферу.

Устройство бесконтактной системы зажигания

1 — Свечи зажигания; 2 — датчик-распределитель; 3 – распределитель; 4 — датчик импульсов; 5 – коммутатор; 6 – катушка зажигания; 7 — монтажный блок; 8 — реле зажигания; 9 — выключатель зажигания; А — к клемме генератора.

Бесконтактная система состоит из следующих элементов:

  • источник питания;
  • выключатель зажигания ;
  • датчик импульсов;
  • транзисторный коммутатор;
  • катушка зажигания;
  • распределитель ;
  • свечи зажигания.
Читать еще:  Масло в АКПП Chevrolet Aveo T300

Общее устройство бесконтактной системы зажигания напоминает строение контактной системы зажигания. Распределитель соединяется со свечами и катушкой зажигания при помощи высоковольтных проводов. Также в бесконтактной системе имеется датчик импульсов и транзисторный коммутатор.

Датчик импульсов служит для создания электро- импульсов низкого напряжения. Различают несколько датчиков импульсов: датчик Холла, индуктивный датчик и оптический.

В бесконтактной системе зажигания свое применение нашел датчик Холла (где под воздействием магнитного поля возникает поперечное напряжение в пластине проводника). Датчик Холла имеет не сложную конструкцию и состоит из постоянного магнита, полупроводниковой пластины, микросхемы и обтюратора (стального экрана).

В стальном экране имеется отверстие, через которое датчик пропускает магнитное поле, вследствие чего в полупроводниковой пластине возникает напряжение. Стальной экран, в свою очередь, не пропускает магнитное поле, и напряжение на полупроводниковой пластине не возникает. Такое своеобразное чередование прорезей в стальном экране содействует созданию импульсов низкого напряжения.

Датчик распределитель — это устройство, в котором объединены датчик импульсов с распределителем. Датчик-распределитель напоминает прерыватель-распределитель, и также как он приводится в действие от коленчатого вала.

Транзисторный коммутатор предназначен для прерывания тока в первичной обмотке катушки зажигания в моменты сигналов датчика импульсов. Прерывание тока происходит за счет срабатывания выходного транзистора.

Как работает бесконтактная система зажигания

Датчик-распределитель приводится в действие от вращения коленчатого вала, формируя импульсы низкого напряжения, которые передает на транзисторный коммутатор. Коммутатор, в свою очередь создает импульсы тока в первичной обмотке катушки зажигания. Когда ток прерывается, индуцируется ток высокого напряжения во вторичной обмотке катушки зажигания, после чего ток высокого напряжения подается на центральный контакт распределителя. В зависимости от порядка работы цилиндров двигателя ток высокого напряжения распределяется по проводам высокого напряжения на свечи зажигания. Свечи зажигания осуществляют воспламенение горючей смеси.

Когда число оборотов коленчатого вала растет, за регулировку угла опережения зажигания отвечает центробежный регулятор опережения зажигания. При изменении режимов работы двигателя регулирование угла опережения зажигания производится вакуумным регулятором опережения зажигания.

Электронное зажигание (бесконтактное): схема устройства и особенности работы

Бесконтактная система зажигания представляет собой более совершенную систему по сравнению с контактно-транзисторным зажиганием. Основная особенность – вместо контактного прерывателя использован бесконтактный датчик. Другими словами, конструкция прерывателя распределителя исключает наличие контактов. В результате такие системы получили название бесконтактные.

При этом установка бесконтактного зажигания возможна даже на тех автомобилях, где изначально стоит контактная система. По этой причине данное решение пользуется большим спросом среди владельцев отечественных авто (например, бесконтактное зажигание ВАЗ). Далее мы рассмотрим, как устроено и работает зажигание электронное, а также какие преимущества системы зажигания данного типа можно выделить.

Система зажигания: бесконтактное зажигание

Итак, бесконтактная система повышает мощность двигателя, уменьшает расход горючего, снижает токсичность выхлопа и т.д. Это становится возможным благодаря тому, что разряд отличается более высоким напряжением (30 тысяч вольт.). В свою очередь, мощная искра позволяет смеси сгорать более эффективно и полноценно.

Если иначе, отсутствие контактов позволяет подать ток на первичную обмотку катушки зажигания через полупроводниковый коммутатор, в результате чего энергия искры больше и удается получить большее напряжение на вторичной обмотке катушки. В среднем, показатель составляет до 10 кВ;

Еще следует добавить, что обслуживать бесконтактное зажигание проще, так как сбои возникают не часто, а сама система нуждается в обслуживании намного реже. Бесконтактное зажигание не нуждается в чистке и регулировке.

Также для нормальной работы электронного зажигания требуется меньше энергии АКБ. Это значит, что «с толкача» двигатель удается завести даже тогда, когда аккумулятор сильно разряжен. Дело в том, что после включения зажигания компоненты практически не потребляют энергию аккумулятора.

Если сравнивать с контактным зажиганием, энергия в этом случае потребляется тогда, когда контакты прерывателя замкнуты, катушка зажигания греется даже при заглушенном моторе. По конструкции бесконтактная система зажигания включает в себя несколько элементов. Если рассматривается схема зажигания данного типа, она включает в себя:

  • питание;
  • выключатель зажигания,
  • датчик импульсов;
  • транзисторный коммутатор;
  • катушка зажигания;
  • распределитель;
  • свечи зажигания;

Распределитель зажигания соединяется со свечами посредством ВВ – проводов (высоковольтные свечные провода зажигания). На деле, устройство бесконтактной системы зажигания напоминает схему контактного зажигания, однако есть и отдельные элементы (датчик импульсов, транзисторный коммутатор).

  • Начнем с того, что датчик импульсов (импульсный датчик)создает электрические импульсы. Такие импульсы имеют низкое напряжение. Датчик может быть датчиком Холла, а также индуктивным или оптическим.

При этом самым распространенным в бесконтактной системе зажигания является датчик импульсов на эффекте Холла. В двух словах, датчик работает за счет появления поперечного напряжения в пластине проводника с электрическим током под действием магнитного поля.

  • Сам датчик Холла включает в себя постоянный магнит, полупроводниковую пластину с микросхемой, а также металлический экран с особыми прорезями. Через прорези в экране проходит магнитное поле, в полупроводниковой пластине возникает напряжение.

Также экран не позволяет магнитному полю проникать постоянно, в результате чего нет напряжения на полупроводниковой пластине. Получается, благодаря чередованию прорезей в экране создаются импульсы низкого напряжения.

Импульсный датчик соединен с распределителем, образуя единый датчик-распределитель. Датчик напоминает прерыватель-распределитель, приводится в действие от коленвала ДВС.

  • Еще одним элементом является транзисторный коммутатор. Данный элемент необходим для того, чтобы прерывать ток в цепи первичной обмотки катушки зажигания.

Прерывание осуществляется благодаря сигналам импульсного датчика (за счет чередующегося отпирания, а также запирания выходного транзистора).

Бесконтактная система зажигания: принцип работы

Рассмотрев устройство и составные элементы, можно перейти к тому, как работает бесконтактное зажигание. Прежде всего, когда вращается коленвал двигателя, происходит формирование импульсов напряжения от датчика-распределителя. Импульсы передаются на транзисторный коммутатор.

В свою очередь, коммутатор формирует импульсы тока в цепи первичной обмотки катушки зажигания. В тот момент, когда происходит прерывание тока, осуществляется индуцирование тока высокого напряжения на вторичной обмотке катушки.

Когда обороты коленвала увеличиваются, происходит регулировка УОЗ (угол опережения зажигания) за счет центробежного регулятора опережения зажигания. Если меняется нагрузка на мотор, угол опережения зажигания меняется за счет вакуумного регулятора опережения зажигания.

Неисправности бесконтактной системы зажигания: признаки и причины

Как и любое другое решение, бесконтактная система зажигания имеет как плюсы, так и минусы. Среди основных недостатков можно выделить то, что надежность некоторых составных элементов (особенно при условии использования дешевых аналогов) может быть низкой.

Само собой, неисправности системы зажигания сразу сказываются на работе двигателя. При этом важно обращать внимание на такие признаки:

  • Запуск двигателя затруднен или невозможен (вероятны проблемы со свечами, ВВ-проводами, катушкой зажигания и т.д.);
  • Также на сбои в системе зажигания указывает то, что на холостом ходу мотор работает нестабильно. Это может быть вызвано пробоями в крышке датчика-распределителя, неисправностями транзисторного коммутатора или самого датчика-распределителя;
  • Отмечен большой расход бензина, падение мощности двигателя, пропуски зажигания и т.д. В этом случае может быть поломка центробежного регулятора опережения зажигания, сбои в работе вакуумного регулятора опережения зажигания и т.д.

Также добавим, что бесконтактная система традиционно имеет слабые места. Это в полной мере касается коммутаторов, особенно старого образца. Еще может подводить катушка.

На практике, нужно приобретать модифицированный коммутатор, а также лучше изделие иностранного производства. Такое решение «ходит» дольше, но и его срок службы, к сожалению, в отдельных случаях может оказаться не большим.

Так или иначе, важно понимать, что использование элементов системы зажигания низкого качества вполне может привести к проблемам. Например, установка неподходящих или проблемных свечей зажигания, несвоевременная их замена, использование дешевых катушек зажигания или неисправных высоковольтных проводов может влиять на исправность и состояние других элементов системы и на работу ДВС в целом.

Также нельзя исключать и воздействие других факторов (повреждения, попадание жидкостей, окисление и т.п.). Например, при мойке двигателя элементы системы зажигания нужно отдельно изолировать, в процессе эксплуатации автомобиля не допускается активное скопление влаги и т.п.

Что в итоге

Как видно, если сравнивать контактную и бесконтактную систему зажигания, именно второй вариант работает лучше. Также такую систему не нужно регулировать и настраивать, то есть отпадает вопрос, как выставить зажигание. Причина — обслуживание сведено к минимуму.

Если же приобретается электронное зажигание на ВАЗ, желательно подбирать все составные элементы хорошего качества, то есть не следует спешить купить бесконтактное зажигание комплектом по самой низкой цене. Как правило, нужно отдельно остановиться на качестве и надежности компонентов в таких комплектах.

Регулировка зажигания на популярных «классических» моделях ВАЗ (2106, 2107 и т.д.). Как настроить зажигание своими руками и проверить качество настройки.

Признаки для определения правильности выставленного угла опережения зажигания. Последствия некорректно настроенного УОЗ, способы выставления зажигания.

Почему важен корректный угол опережения зажигания. Настройка УОЗ на авто с карбюратором. Зажигание на моторах с электронным впрыском и двигателях с ГБО.

Выставление зажигания ВАЗ 2106 своими руками: признаки необходимости регулировки, как отрегулировать зажигание правильно. Порядок выполнения работ.

Что такое моноинжектор: главные отличия и особенности одноточечной системы впрыска топлива. Как проверить и самостоятельно настроить моновпрыск .

Как выставить начало момента впрыска топлива на дизельном двигателе. Различные способы настройки УОВ. Советы и рекомендации при самостоятельной настройке.

Установка бесконтактной системы зажигания своими руками: век живи — век учись

Система зажигания (СЗ) фактически является одним из основных узлов в любом автомобиле, поскольку именно благодаря ей осуществляется запуск двигателя и его оптимальная работа в дальнейшем. На сегодняшний день существует несколько видов СЗ. О том, что представляет собой бесконтактная система зажигания и какие недостатки для нее характерны, вы сможете узнать из этого материала.

Конструкция и принцип действия БСЗ

Так какое зажигание лучше? Перед тем, как мы расскажем об установке и регулировке электронного зажигания своими руками, давайте рассмотрим принцип работы БСЗ и ее конструкцию. Итак, бесконтактная система зажигания представляет собой достаточно сложное по конструкции устройство, которое состоит из множества деталей.

Среди основных компонентов следует выделить:

  • катушка;
  • вакуумный и центробежный регуляторы напряжения;
  • коммутаторное устройство;
  • контроллер сигналов;
  • высоковольтные провода;
  • свечи;
  • аккумуляторная батарея.

Это основные элементы, который включает в себя комплект бесконтактного зажигания. Что касается принципа функционирования, то он довольно простой. Когда водитель поворачивает ключ в замке, на монтажный блок начинает поступать напряжение и здесь же оно распределяется между стартером, катушкой и прочими потребителями тока авто. Коленчатый вал вступает в движение, в результате чего контроллер сигналов начинает передавать импульсы на коммутаторный узел. Предназначение последнего заключается в остановке подачи напряжения на обмотки катушки, благодаря чему ан вторичных витках образуется ток более высокого напряжения.

Схема БСЗ с обозначением элементов

Этот ток позволяет генерировать сильную искру на свечи, которая впоследствии используется для воспламенения горючей смеси. Ток поступает на свечи в определенном порядке, в соответствии с положением коленчатого вала. Данный процесс осуществляется под контролем регуляторов, которые могут определять не только частоту, с которой движется вал, но и степень нагрузки на силовой агрегат. Если бесконтактная система зажигания будет отрегулирована должным образом, на свечах будет образовываться свеча высокой мощности, что обеспечит нормальной возгорание и сгорание горючей смеси.

Плюсы и минусы бесконтактного зажигания

В настоящее время схема бесконтактной системы зажигания реализуется на многих современных бензиновых автомобилях. Основной причиной тому является более высокая надежность системы по сравнению с контактной СЗ, а также более мощная искра.

Если сравнивать с контактной, то электронная система зажигания имеет такие достоинства:

  1. В конструкции СЗ отсутствуют контакты, поверхности которых могут подгорать в результате большого напряжения. Соответственно, проблема падения мощности искрообразования для БСЗ не характерна.
  2. Электронная система зажигания не включает в свою конструкции детали, характеризующиеся быстрым износом, соответственно, необходимость ремонта в таких СЗ возникает значительно реже.
  3. По сравнению с контактными, напряжение в БСЗ, которое подается на электроды свечей, составляет 24 Кв вместо 18 Кв. Это положительно в целом влияет на возгорание горючей смеси и ее сжигание в камерах.
  4. Еще одно неоспоримое преимущество — высокий ресурс эксплуатации и надежность (автор видео — канал Теория ДВС).

Что касается недостатков, то он в данном случае один — датчик Холла, который выходит из строя чаще всего, является неремонтопригодным. Если контактны всегда можно подчистить, то этот контроллер в случае поломки только меняется. Но на практике данный компонент считается одним из наиболее надежных — обычно его ресурс эксплуатации составляет около 50 тысяч км пробега.

Инструкция по установке самодельного БСЗ

Если вы определились, какое зажигание лучше, то перейдем к вопросу установки более хорошего варианта на свой автомобиль. Установка бесконтактного зажигания начинается с монтажа блока, оборудованного стальной пластиной с посадочными отверстиями, которая необходима для охлаждения. Процедуру рассмотрим на примере классического автомобиля ВАЗ 2107. На левом лонжероне должны быть отверстия, к которым прикручивается коммутатор при помощи двух саморезов. Если отверстия нет, то найдите место рядом с катушкой, и просверлите отверстия там (автор видео — канал Sdelaj Sam! Pljus interesnoe!).

Устанавливая самодельное электронное зажигание, коммутатор нельзя монтировать рядом с бачком омывателя. Ведь если он даст течь, то вся электроника «накроется». Перед демонтажем высоковольтных проводов запомните их расположение.

Установка БСЗ осуществляется в таком порядке:

  1. Сначала с нового распределителя нужно снять крышку и установить прокладку. Трамблер монтируется на блоке так, чтобы его подвижный контакт располагался напротив метки на клапанной крышке силового агрегата. Так называемую юбку трамблера следует немного прижать при помощи крепежной гайки, это позволит предотвратить возможное проворачивание распределителя.
  2. Далее, необходимо произвести монтаж катушки на место установки. После этого следует подключить к ее выводам провода от реле замка, коммутатора, а также тахометра. Провод, который идет от контакта 1 на блоке, необходимо соединить с клеммой К непосредственно на катушке. Что касается провода от контакта под номером 4, то он соединяется с клеммой Б.
  3. После выполнения этих действия нужно установить зазор на электродах свечей около 0.8-0.9 мм, а затем сами свечи можно закрутить в посадочные места. Установите крышку на распределительный узел и подключите все необходимые провода в соответствующем порядке. Затем вам остается только подключить вакуумную магистраль. Сделав это, можно приступать к регулировке узла.

Советы по настройке зажигания

Процедура регулировки СЗ осуществляется на прогретом двигателе, она может быть произведена двумя способами:

  • при помощи стробоскопа;
  • на слух.

Стробоскоп представляет собой специальное устройство с лампой, которая моргает в случае подачи сигнала от датчика Холла. Если вы поднесет работающий прибор к маховику коленвала при включенном двигателе, то сможете увидеть положение насечки. Именно это позволяет произвести наиболее точную настройку.

Чтобы произвести регулировку, нужно подключить питание прибора к АКБ, а второй провод — к высоковольтному кабелю на первой свечи. Затем отпустите гайку, фиксирующую распределитель, а моргающую лампочку поднесите к шкиву. Корпус трамблера нужно осторожно поворачивать, не спеша, до того момента, пока метка на шкиве не будет установлена напротив короткой метки. Сделав это, гайку можно затянуть.

Что касается метода на слух, то настройка в данном случае производится в несколько этапов:

  1. В первую очередь, нужно завести мотор, после чего немного отпустить гайку, фиксирующую трамблер.
  2. Медленно проверните распределитель в пределах пятнадцати градусов. Вам необходимо найти положение, при котором силовой агрегат будет работать наиболее оптимально и стабильно.
  3. Когда этот момент будет найдет, гайку распределителя можно закрутить.

Видео «Ремонт БСЗ в домашних условиях»

Подробная и наглядная инструкция касательно ремонта БСЗ в домашних условиях приведена на видео ниже (автор — Владимир Воронов).

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector